
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2014

Energy-efficient and cost-effective reliability design
in memory systems
Long Chen
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Chen, Long, "Energy-efficient and cost-effective reliability design in memory systems" (2014). Graduate Theses and Dissertations.
13710.
https://lib.dr.iastate.edu/etd/13710

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F13710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/13710?utm_source=lib.dr.iastate.edu%2Fetd%2F13710&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Energy-efficient and cost-effective reliability design in memory systems

by

Long Chen

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:

Zhao Zhang, Major Professor

Ying Cai

Morris Chang

Arun Somani

Joseph Zambreno

Iowa State University

Ames, Iowa

2014

Copyright c© Long Chen, 2014. All rights reserved.

www.manaraa.com

ii

DEDICATION

Dedicate to my parents, my parents-in-law and my wife. I have so so many thanks that I

would like say to you....

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . ix

ACKNOWLEDGEMENTS . xii

ABSTRACT . xiv

CHAPTER 1. INTRODUCTION . 1

CHAPTER 2. BACKGROUND . 6

2.1 Main Memory Organization . 6

2.2 DDRx DRAM Power Model . 7

2.3 Memory Error Causes and Consequences . 8

2.3.1 Causes of Memory Errors . 8

2.3.2 Memory Error Rate and Consequences 9

2.4 Memory Error Protection . 10

CHAPTER 3. E3CC: RELIABILITY SCHEME FOR NARROW-RANKED

LOW-POWER MEMORIES . 12

3.1 Introduction . 12

3.2 Background and Related Work . 15

3.3 Design of E3CC . 17

3.3.1 DIMM Organization and Intra-Block Layout 18

3.3.2 Interleaving Schemes and Address Mapping 20

3.3.3 Page-Interleaving with BCRM . 22

3.3.4 Extra ECC Traffic and ECC-Cache . 25

www.manaraa.com

iv

3.3.5 Reliability and Extension . 26

3.4 Experimental Methodologies . 27

3.4.1 Statistical Memory MTTF Model . 29

3.5 Experimental Results . 30

3.5.1 Overall Performance of Full-Rank Memories 30

3.5.2 Overall Performance of Sub-Ranked Memories 31

3.5.3 Memory Traffic Overhead and ECC-Cache 33

3.5.4 Power Efficiency of E3CC Memories . 34

3.5.5 Evaluation of Using Long BCH Code . 37

3.6 Summary . 37

CHAPTER 4. EXPLORING FLEXIBLE MEMORY ADDRESS MAPPING

AT DEVICE LEVEL FOR SELECTIVE ERROR PROTECTION 39

4.1 Introduction . 39

4.2 Background and Related Work . 42

4.2.1 Diverse Sensitivities of Data, Variables and Applications 42

4.2.2 DRAM Accessing Page Policies . 43

4.2.3 Related Work . 43

4.3 Problem Presentation . 44

4.3.1 DRAM Device-Level Address Mapping 44

4.3.2 Address Mapping Issue in SEP . 45

4.4 Novel Address Mapping Schemes . 47

4.4.1 SEP Design Overview . 47

4.4.2 Exploring Generic Address Mapping Schemes 48

4.4.3 Case Study of Real DDR3 System With SEP 56

4.4.4 Hardware Implementation of Modulo Operation 58

4.4.5 Other Discussions . 59

4.5 Discussion of Application Scenarios . 60

4.5.1 OS and Compiler Aided Selective Protection 60

4.5.2 Selective Protection to Lower Refresh Frequency 60

www.manaraa.com

v

4.5.3 Selective Protection to High Error Rate Region 61

4.5.4 Balancing DRAM Access Locality and Parallelism 61

4.6 Summary . 62

CHAPTER 5. FREE ECC: EFFICIENT ECC DESIGN FOR COMPRESSED

LLC . 63

5.1 Introduction . 63

5.2 Background and Related Work . 65

5.2.1 Cache Compression Schemes . 65

5.2.2 Fragments In Compressed Cache . 66

5.2.3 Related Work . 67

5.3 Design of Free ECC . 68

5.3.1 Convergent Allocation Scheme . 68

5.3.2 Free ECC Design . 70

5.4 Experimental Methodologies . 77

5.5 Experimental Results . 78

5.5.1 Comparison of Cache Allocation Schemes 78

5.5.2 B∆I Data Compressed Pattern Analysis 83

5.5.3 Effective Utilization of Cache Capacity 85

5.5.4 Performance of Free ECC . 86

5.5.5 Cache Power Consumption . 88

5.5.6 Energy-Delay Product Improvement . 89

5.6 Summary . 90

CHAPTER 6. MEMGUARD: A LOW COST AND ENERGY EFFICIENT

DESIGN TO SUPPORT AND ENHANCE MEMORY SYSTEM RELI-

ABILITY . 91

6.1 Introduction . 91

6.2 Background and Related Work . 93

6.2.1 Memory Organization Variants . 93

www.manaraa.com

vi

6.2.2 Related Work . 94

6.3 MemGuard Design . 94

6.3.1 Incremental Hash Functions . 94

6.3.2 Log Hash Based Error Detection . 96

6.3.3 Reliability Analysis . 99

6.3.4 Selection of Hash Function . 101

6.3.5 Checkpointing Mechanism for Error Recovery 103

6.3.6 Integrity-Check Optimization and Other Discussions 104

6.4 Experimental Methodologies . 106

6.5 Experimental Results . 106

6.5.1 Reliability Study . 106

6.5.2 System Performance Study . 110

6.5.3 Memory Traffic Overhead . 111

6.6 Summary . 113

CHAPTER 7. CONCLUSION AND FUTURE WORK 114

www.manaraa.com

vii

LIST OF TABLES

Table 3.1 An example layout of address mapping based on CRM. 23

Table 3.2 An example layout of address mapping based on BCRM. 24

Table 3.3 Major simulation parameters. 28

Table 3.4 Power calculating parameters. 28

Table 3.5 Workload specifications. 29

Table 4.1 An example layout of the entire space with cacheline-interleaving scheme. 46

Table 4.2 An example layout with page-interleaving scheme for the region with

six rows without ECC protection. 46

Table 4.3 An example layout of Chinese Remainder Mapping. 49

Table 4.4 An example layout of C-SCM scheme. 50

Table 4.5 Example layouts of C-SCM with breaking-factor and adjusting-factor. . 51

Table 4.6 An example layout of C-SRM scheme. 52

Table 4.7 An example layout of C-SGM scheme. 53

Table 4.8 Example layouts comparison using S-SRM with and without adjusting-

factor. 54

Table 4.9 Example layouts with S-SRM without applying shifting-factor i for the

two address sections. 55

Table 4.10 An example layout of combinations of S-SRM and C-SCM. 56

Table 5.1 Tailored B∆I algorithm with ECC/EDC integrated. 71

Table 5.2 Free ECC write logic hardware implementation truth table. 76

Table 5.3 Major simulation parameters. 77

Table 5.4 Free ECC simulation workloads construction. 78

www.manaraa.com

viii

Table 6.1 Major configuration parameters. 105

www.manaraa.com

ix

LIST OF FIGURES

Figure 1.1 Conventional cache and main memory organization with ECC supported. 2

Figure 2.1 Conventional DDRx memory organization. 7

Figure 2.2 DDRx memory background power states transitions. 8

Figure 3.1 Comparison of the conventional registered non-ECC DIMM and an ex-

ample sub-ranked non-ECC DIMM organization. 16

Figure 3.2 An example layout of a memory block inside a conventional ECC DIMM. 17

Figure 3.3 An example layout of a memory block inside E3CC DIMM of full rank

size. 18

Figure 3.4 An example layout of a memory block inside E3CC DIMM of x16 sub-

rank size. 19

Figure 3.5 Representative memory address mapping for cacheline- and page- inter-

leaving. 21

Figure 3.6 The logic flow of BCRM-based address mapping with page-interleaving. 22

Figure 3.7 Performance of E3CC and baseline memories of different rank sizes. . . 32

Figure 3.8 The extra read memory traffic caused by E3CC when ECC-cache is used. 33

Figure 3.9 ECC-cache read hit rate for mixed and memory-intensive workloads . . 34

Figure 3.10 Memory power consumption breakdown for full- and sub- ranked mem-

ories with and without ECC. 35

Figure 4.1 An example row-index based partitioning for selective protection. . . . 44

Figure 4.2 Overview of SEP design and data/ECC layout. 47

Figure 4.3 Address decomposition procedure. 57

www.manaraa.com

x

Figure 5.1 An example of B8∆2 compression algorithm. 65

Figure 5.2 Comparison of uncompressed cache and compressed cache organizations. 68

Figure 5.3 Comparison of cache allocation schemes. 69

Figure 5.4 Free ECC cache organization. 73

Figure 5.5 Free ECC cache read operation. 74

Figure 5.6 Free ECC cache write operation. 74

Figure 5.7 Comparison of cache compression ratio for three allocation schemes. . 80

Figure 5.8 Profiled cache compression ratio comparison for three cache allocation

schemes. 81

Figure 5.9 System performance comparison of three cache allocation schemes. . . 82

Figure 5.10 Compressed data pattern analysis. 83

Figure 5.11 Effective cache capacity utilization comparison. 84

Figure 5.12 Clean data blocks in a 2MB L2 cache. 86

Figure 5.13 Comparison of cache performance for conventional ECC with Free ECC

cache. 86

Figure 5.14 Four-core system performance comparison of conventional ECC with

Free ECC. 87

Figure 5.15 Power consumption comparison for a 2MB L2 cache in a single-core

system. 87

Figure 5.16 Average L2 cache power consumption comparison. 88

Figure 5.17 Power consumption comparison for a 2MB L2 cache in a four-core system. 88

Figure 6.1 Memory operations for memory error detection. 98

Figure 6.2 Error detection failure rate comparison of MemGuard and SECDED. . 107

Figure 6.3 SECDED error protection capability. 108

Figure 6.4 Memory integrity-checking overhead of SPEC CPU2006 benchmark-

input sets. 109

Figure 6.5 SPEC 2006 memory traffic characterizations. 111

Figure 6.6 Benchmarks memory utilization analysis. 111

www.manaraa.com

xi

Figure 6.7 MemGuard introduced memory traffic overhead by integrity checking. 112

www.manaraa.com

xii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who have helped me for

conducting my research and writing this thesis.

First and foremost, I would like to thank my adviser Dr. Zhao Zhang with deepest gratitude

for his consistent encouragement and patient guidance through my five years Ph.D study. He

leads me to the exciting research area, gives me freedom in seeking research topics, guides me

to resolve the research challenges, and teaches me how to present the idea in words and to the

audiences. Dr. Zhang is not only a great adviser in academy, he is also a mentor and a friend

in my personal life. I remember at early stage that I was depressed by my frustrating research.

It is his full belief in me and constant encouragement that helped me out of the difficult time.

He invited me to play table tennis to release my pressure and encouraged to not hesitate to

develop research ideas. He always encourages me to aim high to compete with students in top

level universities. Without his full trust and encouragement, I could not have reached this far.

Thank you!

I would like to thank the rest of my thesis committee - Professors Ying Cai, Morris Chang,

Arun Somani and Joseph Zambreno for their feedback and suggestions to improve this disser-

tation.

I would also like to thank Dr. Zhichun Zhu from University of Illinois at Chicago for her

insightful suggestions on my research. I would like to thank Kun Fang from University of

Illinois at Chicago for discussing ideas with me, guiding me to integrate the simulation tools

and clarifying my misunderstanding of memory systems. I thank Yanan Cao for helping me out

of challenging coding bugs. He is always the right person for resolving a coding issue. I would

thank Jim Robertson, Manas Mandal, Gilberto Contreras, Major Bhadauria from NVIDIA for

the guidance and for the great time I have during my internship.

I would additionally like to thank all my friends. Bo Sun teaches me how to drive, helps me

www.manaraa.com

xiii

a lot with my five-kilometer running goal and corrects my gestures for swimming, bowling and

pooling. Yuqing Chen, Meng Li, Yinan Fang, Shuren Feng, Xinying Wang, Zhiming Zhang,

Liping Wu, Cheng Gong, Gengyuan Zhang, Haiding Sun, Junfeng Wang, Shu Yang, Hui Lin,

Ziyue Liu, Wei Zhou, Yixing Peng are the names flashed across my mind when I pick the word

friendship. Without you, I cannot have so much fun in Ames.

www.manaraa.com

xiv

ABSTRACT

Reliability of memory systems is increasingly a concern as memory density increases, the

cell dimension shrinks and new memory technologies move close to commercial use. Meanwhile,

memory power efficiency has become another first-order consideration in memory system design.

Conventional reliability scheme uses ECC (Error Correcting Code) and EDC (Error Detecting

Code) to support error correction and detection in memory systems, putting a rigid constraint

on memory organizations and incurring a significant overhead regarding the power efficiency

and area cost.

This dissertation studies energy-efficient and cost-effective reliability design on both cache

and main memory systems. It first explores the generic approach called embedded ECC in main

memory systems to provide a low-cost and efficient reliability design. A scheme called E3CC

(Enhanced Embedded ECC) is proposed for sub-ranked low-power memories to alleviate the

concern on reliability. In the design, it proposes a novel BCRM (Biased Chinese Remainder

Mapping) to resolve the address mapping issue in page-interleaving scheme. The proposed

BCRM scheme provides an opportunity for building flexible reliability system, which favors

the consumer-level computers to save power consumption.

Within the proposed E3CC scheme, we further explore address mapping schemes at DRAM

device level to provide SEP (Selective Error Protection). A general SEP scheme has been

proposed by others to selectively protect memory regions taking into account of both reliability

and energy efficiency. However, there lacks detailed DRAM address mapping schemes which are

critical to the SEP scheme. We thus explore a group of address mapping schemes at DRAM

device level to map memory requests to their designated regions. All the proposed address

mapping schemes are based on modulo operation. They will be proven, in this thesis, to be

efficient, flexible and promising to various scenarios to favor system requirements.

Additionally, we propose Free ECC reliability design for compressed cache schemes. It

www.manaraa.com

xv

utilizes the unused fragments in compressed cache to store ECC. Such a design not only reduces

the chip overhead but also improves cache utilization and power efficiency. In the design, we

propose an efficient convergent cache allocation scheme to organize the compressed data blocks

more effectively than existing schemes. This new design makes compressed cache an increasingly

viable choice for processors with requirements of high reliability.

Furthermore, we propose a novel, system-level scheme of memory error detection based on

memory integrity check, called MemGuard, to detect memory errors. It uses memory log hashes

to ensure, by strong probability, that memory read log and write log match with each other. It is

much stronger than SECDED (Single-bit Error Correcting and Double-bit Error Detecting) in

error detection and incurs little hardware cost, no storage overhead and little power overhead. It

puts no constraints on memory organization and no major complication to processor design and

operating system design. In consumer-level computers without SECDED protection, it can be

coupled with memory checkpointing to substitute ECC, without the storage and power overhead

associated with ECC. In server computers or other computers requiring strong reliability, it may

complement SECDED or chipkill-correct scheme by providing even stronger error detection. In

the thesis, we prove that the MemGuard reliability design is simple, robust and efficient.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Memory system plays pivotal role in computer systems with either Von Neumann or Harvard

architecture. In these architectures, data and programs are stored in memory system and loaded

into processors for program execution. The reliability of memory system is therefore critically

important to correctness of the execution flow. However, physical threats to memory storage

have been observed decades ago and memory system reliability is increasingly a concern as

the fabrication technology scales down to sub-nanometer regime. Without error protection, a

single upset of memory cell can cause memory and data corruptions, application and system

crashes, system security vulnerabilities [108, 27], and others. The more data memory holds and

the longer it maintains, the higher chance that programs may experience upsets and mishaps.

It has been reported from real machine failure statistics that main memory is responsible for

about 40% of system crashes caused by hardware failure [65].

Another major concern of memory system is performance and power consumption in this

era of multi/many-core per system and multi-thread per core. For years, memory technolo-

gies have been pushing forward to chase the performance of processors. Cache memory is

further optimized to reduce its leakage power and on-chip cache capacity is growing to im-

prove system performance. As for main memory, the mainstream DDRx (Double Data Rate)

DRAM (Dynamic Random-Access Memory) frequency has evolved from 800MHz to 933MHz

and 1066MHz to provide a higher bandwidth. Although supplying voltage of each memory

generation decreases, the power consumption of memory system grows to a serious concern in

computer system design. A typical 2GB to 4GB DDR3 memory can consume 5 to 13 Watt

power varied for different configurations with different workloads [36]. As memory capacity

in a server system is up to 32GB, 64GB and even higher, the power consumption of memory

system is substantially large. Studies on real machines have revealed that DRAM memory

www.manaraa.com

2

data ECC

data

ECC

Last-Level Cache

Main Memory

Figure 1.1: Conventional cache and main memory organization with ECC supported. The dark

gray storage is used for ECC.

system can consume more power than processors for memory intensive workloads; and it has

been predicted that future memory systems may consume more than 70% of system power [9].

However, conventional memory error protection scheme introduces significant overhead in

terms of area cost and power consumption. Traditionally, (72, 64) Hamming based [28] or Hsiao

code [31] is applied to provide Single-bit Error Correcting and Double-bit Error Detecting.

Such a code is thus also called SECDED, following its error protection capability. Figure 1.1

shows the memory organization with SECDED ECC (Error Correcting Code) supported. In

both cache and main memory system, extra 1/8 storage is appended to original data arrays

to maintain ECC, which is shown in dark gray fields in the figure. As the applied SECDED

code strictly presents 8:1 ratio for data and ECC code word for a typical 64-byte data block, it

limits the rigid organization of memory system. For example, an eight (x8) DIMM (Dual-Inline

Memory Module) requires one extra DRAM device for ECC and a sixteen (x4) DIMM requires

two more devices. However, it is challenging for a memory module or mobile memory system

with one, two or four devices to preserve the 8:1 ratio. Such a rigid organization of conventional

ECC design limits the adoption of new memory techniques, presenting challenges on designing

a reliable and power-efficient system.

This dissertation studies energy-efficient and cost-effective reliability design on both cache

and main memory systems. It first proposes E3CC (Enhanced Embedded ECC) for power effi-

www.manaraa.com

3

cient sub-ranked and other narrow-ranked memory organizations. By embedding ECC together

with data storage, E3CC design decouples the connection between number of DRAM devices

and error protection code. E3CC design presents the opportunity of flexibility in reliability de-

sign and makes sub-ranked memory organization a viable choice for systems with requirements

of power efficiency and high reliability. Secondly, it further explores E3CC scheme to imple-

ment SEP (Selective Error Protection). SEP framework design is proposed by others [68] for

energy efficient reliability design consideration as it protects solely the critical data. However,

there lacks DRAM device level address mapping schemes to support SEP. We thus explore a

group of address mapping schemes based on efficient modulo operation. The proposed mapping

schemes are flexible, efficient and promising to various scenarios to favor the system require-

ments. Thirdly, it proposes Free ECC design for compressed LLC (Last Level Cache), relying on

the observation that substantial idle fragments are left unused in compressed caches. Free ECC

design maintains ECC in those fragments to save the dedicated storage required in conventional

ECC design to further improve cache capacity utilization and power efficiency. Additionally,

it proposes MemGuard, a system-level scheme with lightweight hardware extension to support

or enhance memory reliability for a wide spectrum of computer systems including consumer

computers with or without ECC and large-scale, high-performance computing applications.

The design is simple, efficient and strong in error detection capability.

In detail, Chapter 3 develops E3CC. It explores the generic approach of embedded ECC on

power-efficient sub-ranked and other narrow-ranked memory systems. It embeds ECC together

with data to avoid using the extra DRAM devices to maintain ECC, which are required in

conventional ECC DIMM. In the design, it proposes a novel BCRM (Biased Chinese Remainder

Mapping) to resolve the DRAM device-level address mapping challenge since effective memory

capacity is reduced to a non-power-of-two size as ECC is embedded. It also identifies the issue of

extra ECC traffic in DDR3 memories embedded ECC may cause, as a result of the burst length

requirement of DDR3. A simple and effective cache scheme called ECC-cache is proposed to

effectively reduce this traffic overhead. The E3CC design enables ECC on conventional non-

ECC DIMMs, which presents the opportunity of flexibility in reliability design. The design is

demonstrated to be efficient and reliable.

www.manaraa.com

4

Chapter 4 explores DRAM device-level address mappings for SEP (Selective Error Protec-

tion). SEP requires to partition memory space into a protected region and an unprotected

region. In this case, a unique and effective address mapping scheme is needed to avoid the

use of complex Euclidean division. It therefore explores the CRM (Chinese Remainder Map-

ping) scheme, and by grouping multiple-columns/rows as a super-column/row, it proves that

CRM is effective for most cases to maintain either access parallelism or row buffer locality.

For a corner case that CRM-based mapping is challenging to present row buffer locality, it

proposes a section-based address mapping scheme, in which the address space is divided into

sections based on greatest common divisor. Additionally, it proposes adjustment-factors for

the proposed mapping schemes to further tune the mapping layout in order to obtain required

properties. The proposed schemes are all modulo based and they are flexible, efficient and

promising to various scenarios that require memory partitioning.

Chapter 5 proposes Free ECC design to embed ECC into substantial idle fragments left,

otherwise unused, in compressed LLC (Last Level Cache). It thus saves the dedicated storage

for ECC in conventional reliable cache design and the power consumption. In the design, it first

proposes a convergent allocation scheme to organize compressed data blocks in cache efficiently,

targeting high compression ratio and low design complexity. Based on the proposed layout, it

carefully examines the technical issues and design challenges in embedding ECC. Three cases

are distinguished and discussed in detail and Free ECC design is demonstrated to be simple

and efficient.

Chapter 6 presents MemGuard, a system-level error protection scheme to provide or enhance

memory reliability for a wide spectrum of computer systems. The core part of MemGuard is

a hash-checking based low-cost and highly-effective mechanism of memory error detection. In

detail, a read log hash (ReadHash) and a write log hash(WriteHash) are maintained, 128-

bit each for data correction check. The two hashes conceptually are hashed values of the

log of all read and write accesses from or to main memory. By synchronizing to the same

point of the two hashes periodically or at the end of program execution, the two match each

other. Otherwise, errors are detected. The proposed MemGuard design can detect multi-bit

errors of main memory, in very strong confidence. This reliability design is generic, which can

www.manaraa.com

5

be applied to both consumer level devices with or without error protection and large-scale,

high-performance computing applications to enhance their reliability.

The overall organization of the rest of this dissertation is as follows. Chapter 2 introduces

background of main memory organization, memory error causes and consequences, and con-

ventional memory error protection schemes. Chapter 3 develops the E3CC design to support

error protection for sub-ranked and other narrow-ranked main memories. Chapter 4 explores

a group of mapping schemes at DRAM device level to support selective error protection for

energy efficient concern. Chapter 5 proposes the Free ECC organization to reduce the cost

of error protection for compressed cache schemes. Chapter 6 presents a system-level memory

error protection with lightweight hardware extension, to support or enhance memory reliability

for a wide spectrum of computer systems. Chapter 7 concludes this dissertation and outlines

future research directions.

www.manaraa.com

6

CHAPTER 2. BACKGROUND

This chapter introduces the background of main memory organizations, basic operation

commands and its power model, which is applied in this thesis for memory power evaluations.

The detailed causes and consequences of memory errors are presented to identify the issue and

conventional memory error protection schemes are introduced. Their rigid organizations and

significant overheads motivate our study.

2.1 Main Memory Organization

Conventional main memory in desktop computers and servers may consist of multiple chan-

nels and each channel connects to one to four DIMMs (Dual Inline Memory Module). A DIMM

is a PCB (Print Circuit Board) that contains one or two ranks, which is formed by eight (x8 or

sixteen x4) DRAM devices. A rank of DRAM devices are operated in tandem to form a 64-bit

data path, which is connected to memory controller through a 64-bit data bus. A memory

request is served by eight bursts on the data bus to pump a 64-byte data block, which is the

same size to the last-level cache data block. In detail, each DRAM device typically consists of

eight DRAM banks and the requested data block is fetched from DRAM bank to row buffer

and then to memory controller for a read request. For a memory write request, the data flow

direction is reversed. Figure 2.1 presents an example modern DDRx DRAM memory organi-

zation, where memory controller issues memory commands and memory request addresses to

DRAM devices and data is transferred in between the two through the data bus.

There are up to three commands in DDRx memory system for serving a request, namely

row activation, column access and precharge [87, 13]. The activation command is issued to the

entire rank of banks to drive data from DRAM device cells to a bank sense amplifier, also called

www.manaraa.com

7

Memory
Controller

A
d

d
r

&
 C

M
D

D
A

TA

DIMM

Row buffer

Bank

Figure 2.1: A conventional DDRx memory organization without error protection.

row buffer as one of its main functions is to temporarily retain data. A DRAM row is also called

opened once it is activated. With a row opened, the following column access command can

fetch a 64-byte data block directly from the row buffer. Typically, the row buffer is large, 8KB

for example, so that continuous column access commands can be issued targeting the opened

row. Such a case is called row buffer hit as it saves an extra row activation command to open

the row for the column access. When a memory request is completed, a precharge command

can be issued to restore data from row buffer back to DRAM device cells and the bank is said

to be closed. As all rows in one bank share the same row buffer, solely one row can be opened

in each bank. With the bank precharged, a DRAM access cycle is said to be completed and

the bank is ready for another activation command.

2.2 DDRx DRAM Power Model

DDRx DRAM power is classified into four categories: background, operation, read/write,

and I/O [70]. Operation power is consumed when bank precharge and activation commands

are executed. Read/write power is for memory read and write while I/O power is to drive data

bus for a rank and to terminate data on other ranks in the channel. DDRx DRAM supports

multiple power levels to reduce background power as it is consumed consistently with or without

operations. Figure 2.2 presents the three power levels and six power modes that a DRAM device

can stay. The three levels are standby, powerdown and self-refresh. A DRAM rank is said to

be in precharge standby if all the banks in the rank are closed; otherwise, it is active standby.

The two standby modes consume high background power but the rank is ready for accesses.

www.manaraa.com

8

Active Standby
Precharge
Standby

Self-refresh

Active
Powerdown Precharge

Powerdown
Fast

Precharge
Powerdown

Slow

precharge

activation

PDX PDX
PDX,

DLL on
PDE

PDE PDE,
DLL off

SRE

SRX

Figure 2.2: DDRx memory background power states tensions. PDE: PowerDown Enter; PDX:

PowerDown eXit; SRE: Self-Refresh Enter; SRX: Self-Refresh eXit.

When the clock is disabled, the two standby modes transit to their corresponding powerdown

modes, namely precharge powerdown fast and active powerdown. These two powerdown modes

consume less power than standby modes with penalty of longer access latency to wake up the

rank. There is one extra mode for precharge powerdown, namely, precharge powerdown slow.

It is entered with DLL (Delay Lock Loop) frozen and it consumes less power than precharge

powerdown fast but takes longer time to be ready for memory requests. The last power level

is called self-refresh that consumes the least power as it just performs the periodic refresh

operations to retain the data. It takes the longest time to wake up for memory accesses.

2.3 Memory Error Causes and Consequences

2.3.1 Causes of Memory Errors

Memory soft error was first reported by May and Woods [67] in 1979. Since then consider-

able efforts have been spent on memory error studies [45, 72, 10, 6, 113, 114, 103, 73]. Memory

errors are mainly caused by unexpected charge intrusions due to particle injections. For years,

multiple mechanisms have been observed to induce memory errors [6, 39, 40]. Alpha particles

emitted by impurities in packaging materials are proved to be the dominant cause of soft er-

rors decades ago. Then high-energy and low-energy neutrons from cosmic rays are observed to

tamper memory data through two different mechanisms. As memory technology scales down

to nanometer regime, complex physical effects are increasingly challenging to memory reliabil-

www.manaraa.com

9

ity [39, 40]. In detail, ITRS 2011 presents the following effects. First, the thinner MOS gate

dielectric sustains less time to breakdown. Second, the scaling effect raises the issues of process

variations and random charge fluctuations, which exacerbate memory cell reliability. There are

also many other effects, such as p-channel negative bias temperature instability (NBTI), the

random telegraph noise (RTN) and others [39] that are increasingly severe.

2.3.2 Memory Error Rate and Consequences

Recent studies on large field real machines have found that main memory error rate is orders

of magnitude higher than previously reported. One of the most recent studies on Google’s fleet

of servers reports about 25,000∼70,000 FIT per Mbit of DRAM systems [92]; FIT represents

failures in a billion operation hours. The ratio of correctable error is 8.2% per year among ECC

DIMMs, i.e. 8.2 of every 100 DIMMs detect and correct at least one error. The probability of

uncorrectable error is 0.28% per year among ECC DIMMs, and 0.08% per year with Chipkill

correct. Another study based on IBM Blue Gene (BG) supercomputers at multiple national

laboratories also reports high error rate [33]; for example, FIT of 97,614 on BG/L computers at

the Lawrence Livemore National Laboratory and 167,066 on BG/P computers at the Argonne

National Laboratory. In addition, it observes error correlation on the same row or column,

indicating high rate for multi-bit errors. Some other studies [59, 10] also show the increase of

memory error rate. ITRS 2011 [39] proposes the requirement of 1,000 FIT for future DRAM

error ratio, which is challenging to meet.

Cache memory reliability has also been a serious concern for decades. It is increasingly

severe for several reasons as manufacture technology scales down. First, data stored in shrunk

cells becomes more vulnerable to energetic particles, such as alpha particles and neutrons.

Even if single cell memory error rate keeps constant, number of errors in entire cache grows

with the increase of cache capacity [6]. The cache memory error rate is further exacerbated

as operating voltage decreases and processor operating frequency increases. Meanwhile, the

aggressive optimization for reducing leakage power worsens cache error rate [14]. On-chip

cache usually occupies a large portion of chip area, which presents a high probability of upset.

In addition, the errors in cache can propagate easily, corrupting applications and even crashing

www.manaraa.com

10

the system as cache is close to the processing units and register files [118].

Memory errors may have unpredictable and sometimes serious consequences to computer

users. It may lead to user data errors, program or system crashes, and in the worst case security

vulnerabilities [108, 27]. It has been reported that, among all computer components, memory

error is the top cause of system crashes [91]. As for security, a memory error may cause illegal

and unpredictable control flow. A study [27] on Java program execution shows that a single-bit

error has a chance as high as 70% to induce the execution of arbitrary code.

2.4 Memory Error Protection

A large amount of studies have focused on main memory error protections [45, 72, 10, 6,

113, 114, 103, 73]. The most widely adopt scheme is to use ECC (Error Correcting Code),

such as SECDED [83, 24], i.e. Single-bit Error Correcting and Double-bit Error Detecting.

Specifically, it employs a (72, 64) Hamming [28] based or Hsiao Code [31], which encodes a

64-bit data into a 72-bit ECC word with 8 parity bits. A single-bit error within the 72-bit

ECC word is correctable and a double-bit error is detectable but not correctable. Another

simple code is EDC (Error Detecting Code), which requires merely one even/odd parity bit for

a 64-bit data block. It can be used to detect all odd-bit errors.

In DDRx memory systems, a non-ECC DDRx DIMM usually has one or two ranks of DRAM

devices, with eight x8 or sixteen x4 devices (chips) in each rank to form a 64-bit data path.

A conventional ECC DIMM, with SECDED, has nine x8 or eighteen x4 devices per rank to

form a 72-bit data path, with the extra one or two devices to store the parity bits. The DDRx

data buses are 64-bit and 72-bit, respectively, without and with ECC. Therefore ECC DIMMs

are not compatible with a motherboard designed for non-ECC DIMMs. In addition, the 8:1

ratio of SECDED code presents a rigid organization of DIMM structures. With DDRx memory

modules of four devices in a rank, the ECC overhead is higher to maintain the 8:1 ratio. Cache

memories also adopt SECDED protection in general. For a 64-byte cache block, it attaches 8

bytes ECC codeword, which incurs 12.5% storage and power overhead. As cache organization is

more flexible than DDRx memory system, there are many other types of codes for higher error

protection, such as DECTED (Double-bit Error Correcting and Triple-bit Error Detection),

www.manaraa.com

11

SNCDND (Single-Nibble error Correction and Double-Nibble error Detection) [11] and Reed

Solomon [84] codes. However, they are rarely used due to high overheads. For example, the

overheads are 23% and 22% for DECTED and SNCDND, respectively, given a 64-byte data

word.

Chipkill Correct [64, 35, 15], a stronger but more costly design, has the capability of Single

Device Data Correction (SDDC) in addition to SECDED in DRAM systems. Previous Chipkill

design uses eight DRAM devices to tolerate single-device error in 64 devices following SECDED

coding structure. It introduces significant power overhead as 72 devices are grouped to work

in lockstep. A recent design groups multiple bits from one memory device as a symbol and

applies symbol-correction code to recover a device failure [113, 114]. It typically organizes 36

x4 DRAM devices in a particular way to form a 144-bit data path, transferring both data and

symbol-correction code. Such a scheme involves 36 DRAM devices in one memory access, still

with significant memory power consumption. The most recent Chipkill design [103] proposes

multi-tier error detection and correction schemes to form a Chipkill level protection. It uses

nine x8 DRAM devices to carefully organize data, EDC and ECC bits at each tier, but with

an increased ratio of storage overhead. The downside of chipkill, however, is excessive memory

power consumption because in most Chipkill schemes each memory access may involve many

more memory devices than conventional ECC memories.

All these reliability designs on DRAM systems limit error protection in DRAM itself and

the designs are tightly coupled with DRAM device types and organizations. The schemes are

inefficient in terms of storage, cost and power consumption.

www.manaraa.com

12

CHAPTER 3. E3CC: RELIABILITY SCHEME FOR

NARROW-RANKED LOW-POWER MEMORIES

This chapter presents and evaluates E3CC (Enhanced Embedded ECC), a full design and

implementation of a generic embedded ECC scheme that enables power-efficient error protection

for subranked memory systems. It incorporates a novel address mapping scheme called BCRM

(Biased Chinese Remainder Mapping) to resolve the address mapping issue for memories of

page interleaving, plus a simple and effective cache design to reduce extra ECC traffic. Our

evaluation using SPEC CPU2006 benchmarks confirms the performance and power efficiency

of the E3CC scheme for subranked memories as well as conventional memories.

3.1 Introduction

Memory reliability is increasingly a concern with the rapid improvement of memory density

and capacity, as memory holds more and more data. Without error protection, a single upset of

memory cell may lead to memory corruption, which may have further consequences including

permanent data corruption, program and system crashes, security vulnerabilities, and others.

However, the majority of consumer-level computers and devices have not yet adopted any

memory error protection scheme. The more data in unprotected memory and the longer they

stay there, the higher chance that users may experience those mishaps.

Meanwhile, memory power efficiency has become a first-order consideration in computer

design. DRAM memory systems can consume more power than processors [60] on memory

intensive workloads; and it has been predicted that future systems may spend more than 70%

of power in memory [9]. Recently proposed sub-ranked DDRx memories [2, 1, 121, 105] reduce

memory power consumption significantly by using memory sub-ranks of less than 64-bit data

www.manaraa.com

13

bus and less number of devices than conventional DDRx memories; for example, with two x8

devices in a sub-rank of 16-bit bus width. Additionally, mobile devices such as iOS, Android,

and Windows phones and tablets have started to use low-power DDRx (LPDDR, LPDDR2,

LPDDR3 and the incoming LPDDR4) memory with 32-bit data bus, which is similar to 32-bit

sub-ranked memory. Those mobile devices have been increasingly used in applications that re-

quire reliable computing to an extent; for example, medical care, mobile banking, construction,

and others.

The two trends lead to a conflict between memory reliability and power efficiency. Con-

ventional ECC memory employs a memory error protection scheme using a (72, 64) SECDED

code, of which an ECC word consists of 64 data bits and eight ECC bits. A memory rank in

ECC DDRx memory may consist of eight x8 memory devices (chips) dedicated for data and

one x8 device dedicated for ECC, or sixteen x4 devices dedicated for data and two x4 devices

dedicated for ECC. Sub-ranked and those narrow-ranked low-power memories are incompatible

with this memory rank organization, leaving the question how to implement error protection in

them1. The study of Mini-Rank [121], one type of sub-ranked memory organization, proposes a

generic approach called Embedded ECC to alleviate the concern. In Embedded ECC, data bits

and ECC bits of an ECC word are mixed together, and therefore dedicated ECC devices are no

longer needed. It essentially decouples memory organization and the choice of error protection

code. With the mixing, however, the effective size of DRAM row is no longer power-of-two,

which complicates memory device-level address mapping. If an efficient address mapping is

non-existent, Embedded ECC will not be a practical solution. Embedded ECC does identify

CRM (Chinese Reminder Mapping) [25] to be a potential solution to the address mapping

issue, but there lacks design and implementation details.

This chapter presents E3CC (Enhanced Embedded ECC), which is a full design and imple-

mentation of Embedded ECC, but with its own innovations and contributions. E3CC shares

the following merits with the original Embedded ECC (most of which were not identified in

the previous study [121]):

• E3CC can be integrated into sub-ranked memory, yielding a power-efficient and reliable

1If a shorter ECC word is used, ECC storage overhead will increase significantly.

www.manaraa.com

14

memory system. It can also be applied to those mobile devices using low-power DDRx

memory.

• Although it is proposed for sub-ranked memories, it may also be used to provide ECC

protection to non-ECC DDRx DIMMs by an extension to memory controller, with no

change to the DIMMs or devices. Such a system can be booted in either ECC memory

mode or non-ECC memory mode.

• It is now possible to use other error protection codes with more extension in memory

controller; for example, a long BCH(532, 512) code that corrects 2-bit error and detects 3-

bit error using 532-bit word size and with 3.9% overhead. By comparison, the conventional

ECC memory corrects 1-bit error and detects 2-bit error using 72-bit word size and with

12.5% overhead.

This study on E3CC has its own contributions and innovations beyond the original idea of

Embedded ECC:

• The E3CC is a thorough design and a complete solution. Equally important, its per-

formance and power efficiency have been thoroughly evaluated by detailed simulation of

realistic memory settings. Both are critical to prove that E3CC will be a working idea

when applied. By comparison, the original Embedded ECC was a generic idea, with

little design detail and no evaluation at all. It was a supplemental idea to the Mini-Rank

design.

• A novel and unique address mapping scheme called Biased Chinese Reminder Mapping

(BCRM) has been proposed to resolve the address mapping issue for page-interleaving

address mapping scheme. BCRM is an innovation by itself. It can be used in memory

systems where the address mapping is not power-of-two based and spatial locality is

desired.

• The study of Mini-Rank [121] identified CRM [25] as a potential method of efficient

address mapping, which motivated the search for BCRM. However, this study has found

www.manaraa.com

15

out that cacheline-interleaving in Embedded ECC does not really need CRM; and for

page-interleaving, CRM may destroy or degrade the row-level locality of page-interleaving.

• This study identifies the issue of extra ECC traffic in DDR3 memories that Embedded

ECC may cause, as a result of the burst length requirement of DDR3. A simple and

effective scheme called ECC-cache is proposed to effectively reduce this traffic overhead.

E3CC and the original Embedded ECC idea are related to but different from recent studies

on memory ECC design. In particular, Virtualized ECC [113, 114] also makes ECC flexible as

E3CC does, but by storing ECC bits into separate memory pages. It relies on a processor’s

cache to buffer unused ECC bits to avoid extra ECC traffic. E3CC has more predictable

worst-case performance than Virtualized ECC, because it puts data bits and the associated

ECC bits in the same DRAM rows. Accessing uncached ECC bits is merely an extra column

access and additional memory bursts following those for data, with only a few nanoseconds

added to memory latency, and no extra power spent on DRAM precharge and row activation.

LOT-ECC [103] provides chipkill-level reliability using nine-device rank (assuming x8 devices).

LOT-ECC also stores ECC bits with data bits in the same DRAM rows; however, it is otherwise

very different from E3CC in design. LOT-ECC provides stronger reliability than E3CC but

at the cost of more storage overhead (26.5% vs. 14.1%). The LOT-ECC design as presented

is not compatible with sub-ranked memories, and thus LOT-ECC memory may not be as

power-efficient as E3CC memory with sub-ranking.

The rest of this chapter is organized as follows. Section 3.2 introduces background of sub-

ranked memory organizations and related work. Section 3.3 presents novel address mapping

and the design of Embedded ECC. Section 3.4 describes the performance and power simulation

platform for DDRx memory. The performance and power simulation results are presented and

analyzed in Section 3.5. Finally, Section 3.6 concludes the chapter.

3.2 Background and Related Work

Sub-ranked Memory Organization A memory access may involve up to three DRAM

operations, namely precharge, activation (row access), and read/write (column access). The

www.manaraa.com

16

	

ADDR/CMD bus data bus x64x8

Memory controller
D

R
A

M

(a) Conventional registered DIMM organization
without ECC.

	

ADDR/CMD bus data bus x64 sub-rank x32

Memory controller

x8

D
R

A
M

(b) Sub-ranked DIMM organization with x32 sub-
rank size without ECC.

Figure 3.1: Comparison of the conventional registered non-ECC DIMM and a sub-ranked non-

ECC DIMM organization. The sub-ranked DIMM consists of four devices per rank in this

example.

memory controller issues commands to all devices in a rank to perform those operations. Sub-

ranked memory organization [121, 2, 1, 105] is proposed to reduce the number of devices in a

rank so as to reduce DRAM operation power spent on precharge and activation. It also increases

the number of sub-ranks, which helps reduce DRAM background power. Figure 3.1 illustrates

two DIMM organizations, a conventional registered DIMM and sub-ranked DIMM with 32-bit

rank size. The difference is that the incoming commands and addresses are buffered and de-

multiplexed to the devices in the destination sub-rank. This difference makes them sub-ranked,

i.e. a full-size rank is now divided into sub-ranks of four, two or even one device. Figure 3.1b

shows an example of sub-ranked DIMM with four devices per rank. For each memory access,

the number of DRAM devices involved is effectively reduced, thus effectively reducing the row

activation power and background power, which dominate memory power consumption.

Related Work There have been many studies on memory system reliability [113, 114,

90, 94, 103, 73, 115] and memory power efficiency [16, 32, 121, 104]. Most of those reliability-

related studies focus on error correction for phase change memory and cache memory. Two

studies closely related to our work are Virtualized ECC [113, 114] and LOT-ECC [103], which

have been discussed in Section 3.1.

Recent studies show another trend of adopting sub-ranked memory architecture for power

concern. The sub-ranked memory architecture divides conventional memory rank into multiple

sub-ranks, each with a smaller number of DRAM devices involved. Mini-rank DIMM [121]

breaks conventional DRAM rank into multiple smaller mini-ranks to reduce the number of

www.manaraa.com

17

D D D D B1 D D D …

B0 B1 B2 B3 B4 B5 B6 B7

A memory block of cacheline size, 512 bits,

split into eight 64-bit sub-blocks

8Kb row storing data, divided in 128 64-bit super-columns

A rank of ECC DDR3 DIMM

with x8 devices

E

D

0 1 2 3 4 5 6 7 127

E E E E E E E E … E

0 1 2 3 4 5 6 7 127

…

8Kb row of device ECC, divided in 128 64-bit super columns

64 ECC bits

E0 E1 E2 E3 E4 E5 E6 E7

Figure 3.2: An example layout of a memory block of cacheline size (512-bit) inside a rank of

a conventional ECC DDR3 DIMM using x8 devices. Each rank has eight data devices plus an

ECC device. Each device has multiple banks, which is not shown. D represents a generic data

super-column, and E represents a generic ECC super-column. One super-column is 64-bit, or

eight columns in a device row. Bi represents a 64-bit sub-block of the memory block, and Ei

represents the corresponding eight ECC bits. The memory block occupies eight 64-bit super-

columns that are distributed over the eight devices; the ECC bits are stored in a column in

the ECC device. An 8K-bit row consists of 128 super-columns. The row layouts of the second

device and the ECC device are selectively highlighted, and so are the mappings of sub-block

B1 and the ECC bits.

DRAM devices involved in one memory access, which thereby reduces the activation and row

access power. The introduced bridge-chip works as a transfer to send 64-bit data to the 64-bit

data bus. Multi-core DIMM [2, 1] is similar to sub-rank but uses split data bus with shared

command and address bus to reduce the design complexity.

3.3 Design of E3CC

In this section, we present the design of E3CC and discuss in detail its design issues including

memory block layout, page-interleaving and BCRM, ECC traffic overhead and ECC-cache, and

the use of long error protecting code. All discussions are specific to DDR2/DDR3 DRAM

memory; however, most discussions are also valid to other types of memory such as phase-

change memories.

www.manaraa.com

18

D D D D B1 D D D D D D D D D D DE E …

B0 B1 B2 B3 B4 B5 B6 B7

A rank of non-ECC DIMM

with DDR3 x8 devices

E

64 ECC bits

0 1 2 3 4 5 6 7 8

D D D D D D D D E - -

9 10 11 12 13 14 15 16 17 117 118 119 120 121 122 123 124 125 126 127

E0 E1 E2 E3 E4 E5 E6 E7

E E E E E1 E E E

0 1 2 3 4 5 6 7

A memory block of cacheline size, 512 bits,

split into eight 64-bit sub-blocks

Figure 3.3: An example layout of a memory block of cacheline size (512-bit) inside a rank of

E3CC DDR3 DIMM of the full rank size. Other assumptions are the same as in Figure 3.2.

The row layout of the second device is selectively highlighted, and so are the mappings of the

second sub-block B1 and the ECC sub-block E1.

3.3.1 DIMM Organization and Intra-Block Layout

Figures 3.2 and 3.3 contrast the difference of conventional ECC memory and E3CC memory.

They show the mapping of memory sub-blocks inside a memory block of cacheline size; note

that a memory block may be mapped to multiple memory devices. Most memory accesses are

caused by cache miss, writeback, or prefetch. The examples assume Micron DDR3-1600 x8

device MT41J256M8 [69], which is 2G-bit each and has 8 internal banks, 32K rows per rank,

1K columns per row and eight bits per column. DDR3 requires a minimum burst length of

eight, so each column access involves consecutive eight columns. We call an aligned group

of eight columns a super-column. The ECC is a (72, 64) SECDED code made by a (71, 64)

Hamming code plus a checksum bit, so each ECC word consists of 64 data bits and 8 ECC bits.

In the conventional ECC DIMM, a memory block of the 64B cacheline size may occupy eight

64-bit super-columns distributed over the eight data devices. The ECC bits occupy a single

super-column in the ECC device.

E3CC DIMM is physically the same as conventional non-ECC DIMM. However, the ECC

bits are mixed with data bits in the same DRAM rows. To maintain the 8:1 ratio of data and

ECC, there is one ECC super-column for every eight data super-columns. The data bits of the

www.manaraa.com

19

D D D D B0 B1 B2 B3 D D D D D D D DE E …

B0 B1 B2 B3 B4 B5 B6 B7

512-bit memory block

A rank of non-ECC DIMM

with DDR3 x8 devices

E

64 ECC bits

0 1 2 3 4 5 6 7 8

D D D D D D D D E - -

9 10 11 12 13 14 15 16 17 117 118 119 120 121 122 123 124 125 126 127

E0 E1 E2 E3 E4 E5 E6 E7

E E E E E0 E1 E2 E3

0 1 2 3 4 5 6 7

Figure 3.4: An example layout of a memory block of cacheline size (512-bit) for 16-bit sub-

ranked E3CC DDR3 DIMM. The other assumptions and notations are the same as in Figures 3.2

and 3.3. The row layout of the third device is selectively highlighted, and so are the mappings

of sub-blocks B0-B3 and the ECC sub-blocks E0-E3.

memory block are distributed over the eight devices, one super-column per device. The ECC

bits are also evenly distributed, occupying 1/8 super-column per device. An ECC super-column

in the row is made by ECC bits from eight memory blocks. For this particular device, each

row has 112 data super-columns and 14 ECC super-columns. The last two super-columns are

not utilized, which are 1.6% storage overhead, in addition to the 12.5% ECC storage overhead.

The layouts can have different variants as long as the data and ECC bits of a memory

block are evenly distributed over all devices in the rank and using the same row address. The

intra-block layout of E3CC DIMM is designed to be compatible with the burst length of eight

of DDR3 devices2. A DDR3 device uses an internal buffer of eight bits per I/O pin to convert

slow and parallel data into high-speed serial data; therefore, for a x8 device, each column access

(data read/write) involves 64-bit memory data. Accessing a memory block of 64B requires only

a single column access. However, accessing the associated ECC bits requires another column

access (but no extra precharge or activation), of which only 1/8th of the bits are needed. We

proposed ECC-cache to address this issue, which will be discussed in Section 3.3.4. DDR2 also

2DDR3 has a burst chop 4 mode, in which the burst length is reduced to four but with extra performance
overhead introduced.

www.manaraa.com

20

supports a burst length of four (in addition to eight), for which the layout can be different.

Figure 3.4 shows the intra-block layout for 16-bit sub-ranked E3CC DIMM. The DIMM

organization is the same as 16-bit sub-ranked, non-ECC DIMM. The memory block is now

mapped to two x8 devices, using four data super-columns and 1/2 ECC super-column. Each

memory access involves two devices, drastically reducing the power and energy spent on device

precharge and activation. Accessing the ECC bits incurs less potential waste of bandwidth

than before, as two memory blocks share one ECC super-column instead of eight in fully

ranked DIMM. The last two super-columns are still leftover.

We do not show the layouts of 8-bit and 32-bit sub-ranked organizations as they are sim-

ilar to that of the 16-bit, except that the memory block is mapped to one and four devices,

respectively. The leftover ratio stays at 1.6% as the last two columns cannot be utilized. For

8-bit sub-ranked DIMM, the ECC bits of a memory block occupy a whole ECC super-column

and therefore there is no potential waste of bandwidth when accessing the ECC bits.

3.3.2 Interleaving Schemes and Address Mapping

Memory interleaving decides how a memory block is mapped to memory channel, DIMM,

rank and bank. It is part of the memory address mapping, i.e. to translate a given physical

memory block address to the channel, DIMM, rank, bank, row and column indexes/addresses.

In conventional ECC DIMM, the logic design is simply a matter of splitting memory address

bits. With E3CC, the number of memory blocks in the same row of the same rank and bank is

no longer power-of-two, which complicates the memory device-level address mapping.

Two commonly used address mapping schemes are cacheline-interleaving and page-interleaving,

and each has its variants. Figure 3.5 shows representative address mappings of the two types in

DDRx memories. The main difference is that in page-interleaving, consecutive memory blocks

(within page boundary) are mapped to the same DRAM rows, where in cacheline-interleaving

the consecutive blocks are distributed evenly over channels, DIMMs, ranks and banks (not

necessarily in that order). Page-interleaving is commonly used with open page policy, in which

the row buffer of a bank is kept open after access; and cacheline-interleaving is commonly used

with close-page policy. If another access falls into the same memory row, the data is still in the

www.manaraa.com

21

Row Bank Rank DIMM Channel

Column Row Bank Rank DIMM Channel Block Offset

Column Block Offset

Cacheline interleaving 1

Page interleaving

Column Row BankRank DIMM Channel Block Offset

Cacheline interleaving 2

Figure 3.5: Representative memory address mappings for cacheline-interleaving and page-

interleaving in DDRx memory systems. Cacheline interleaving 1 may be used in systems of

memory power and thermal concerns, and cacheline interleaving 2 may be used to minimize

the impact of rank-to-rank switching penalty on memory throughput.

row buffer of the bank and thus the read/write operation may start immediately. Otherwise,

the bank must be precharged and then activated before the read/write operation, increasing

memory access latency. Cacheline-interleaving with close-page policy is generally more power-

efficient than page-interleaving with open-page policy, because it consumes more power to keep

a row buffer open. However, the latter can be more power-efficient if there is a high level of

page locality in memory accesses.

A major concern of E3CC is regarding the address mapping scheme, because the effective

size of DRAM rows, e.g. the number of data blocks/bits (excluding ECC bits) they hold, is

no longer power-of-two. That means the column address may not be extracted directly from the

physical memory address bits; and all address components to the left of the column address

bits will be affected. We find that, however, for column-interleaving schemes whose column

address is the leftmost bits in the physical memory address, the address mapping is not an

issue. Those address components can be broken down as shown in Figure 3.5; the difference

is that a subset of high-end column addresses becomes invalid, as they would represent invalid

physical memory addresses on E3CC memory. Page-interleaving, however, is affected because

the column address appears in middle of the physical memory address. An integer division

may have to be used, unless a unique and efficient address mapping scheme is found.

However, using integer division may negatively affect memory latency and throughput. It

was not acceptable in 1980s and 1990s [54, 101, 25], and still very questionable in modern

processors. A 32-bit integer division takes many clock cycles (56∼70 in Pentium 4 processor).

www.manaraa.com

22

Super-Block Address

Global row address

Row Bank Rank DIMM Channel

Page-interleaving

BCR Mapping Logic

Memory Block Address

Offset

Column Addr. Logic

Column Addr.

Sequence

u

v

d

Figure 3.6: The logic flow of BCRM-based address mapping with page-interleaving.

It can be even more expensive than double-precision floating-point division (38 in Pentium 4

processor) [100]. A recent manual from Intel [37] reports that the latency of IDIV (Integer

Division) instruction is from 20 to 70 cycles for Intel 64 and IA-32 architectures. We did

simulation to evaluate the performance impact of adding 5ns, 10ns and 15ns for integer division

delay to the memory controller overhead, using the baseline simulation setting in Section 3.4.

The performance degradation is 3%, 5% and 7%, respectively. The simulation assumes that the

division unit is fully pipelined. In reality, it is difficult to pipeline a division unit; that means

multiple division units may have to be used, or this will be another factor limiting memory

throughput. In our simulation setting, the peak memory throughput is one access per 2.5ns.

Finally, for mobile processors or SoCs (System-On-Chip) of relatively low speed, the latency of

integer division may be even longer than 15ns.

3.3.3 Page-Interleaving with BCRM

CRM and BCRM We have found a novel and efficient address mapping scheme called

BCRM (Biased Chinese Reminder Mapping). We start with an existing scheme called CRM

(Chinese Reminder Mapping), which was proposed based on Chinese Reminder Theorem [25],

in which a memory block address d is decomposed into a pair of integers 〈u, v〉, with 0 ≤ d ≤

www.manaraa.com

23

0 1 2 3 4 5 6

0 0 8 16 24 32 40 48

1 49 1 9 17 25 33 41

2 42 50 2 10 18 26 34

3 35 43 51 3 11 19 27

4 28 36 44 52 4 12 20

5 21 29 37 45 53 5 13

6 14 22 30 38 46 54 6

7 7 15 23 31 39 47 55

Table 3.1: An example of layout for the address mapping from d to 〈u, v〉 based on the CRM,

with m = 8 and p = 7. For example, 11 is mapped to 〈3, 4〉 as 11 mod 8 = 3 and 11 mod 7 = 4.

A row represents a value of u and a column represents a value of v. The numbers in bold type

highlight the mapping for the first 14 blocks. In CRM, each column is intended to represent a

memory bank, and consecutive blocks should be mapped evenly to multiple banks. Row-level

locality does not matter.

pm− 1, 0 ≤ u ≤ m− 1 and 0 ≤ v ≤ p− 1, using the following formula3:

u = d mod m, v = d mod p

CRM ensures that the mapping from d to 〈u, v〉 is “perfect” if p and m are coprimes, where

being “perfect” means all possible combinations of (u, v) are used in the address mapping. Two

integers are coprimes if their greatest common divisor is 1. The formal proof of the “perfect”

property is given in the previous study [25]. Table 3.1 shows the layout of block address d under

this mapping, assuming p = 7 and m = 8. As it shows, the numbers are laid out diagonally

in the two-dimension table. In a prime memory system, p is intended to be the number of

memory banks and m the number of memory blocks in a bank, and p is also intended to be

a prime number. However, when used with page-interleaving, CRM will disturb the row-level

locality as it was not designed for maintaining the locality.

BCRM adds a bias factor to the original CRM formula:

u = ((d− (d mod p)) mod m, v = d mod p

The bias factor −(d mod p) adjusts the row position of each block; it “draws back” consecutive

blocks to the same row. Table 3.2 shows an example of BCRM using the same parameters as

3We have reversed the notations of u and v from the equations in [25].

www.manaraa.com

24

0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 49 50 51 52 53 54 55

2 42 43 44 45 46 47 48

3 35 36 37 38 39 40 41

4 28 29 30 31 32 33 34

5 21 22 23 24 25 26 27

6 14 15 16 17 18 19 20

7 7 8 9 10 11 12 13

Table 3.2: An example of layout for BCRM, which maps d to 〈u, v〉 with m = 8 and p = 7.

For example, 11 is mapped to 〈7, 4〉 as (11 − (11 mod 7)) mod 8 = 7 and 11 mod 7 = 4. A

row represents a value of u and a column represents a value of v. The numbers in bold type

highlight the mapping for the first 14 blocks. In BCRM, each row is intended to represent a

memory row (all blocks in the same row resides in a single bank, and different rows may or

may not be mapped to the same bank), so maintaining row-level locality or not makes a critical

difference.

in Table 3.1. In our application scenario, u is the global row address and v is super-block index

(to be discussed) in the row. The global row address is further decomposed as channel, DIMM,

rank, bank, and row addresses as Figure 3.6 shows.

Proof of Correctness and Row Locality BCRM is a “perfect” address mapping,

i.e. the mapping is mathematically a one-to-one function from d ∈ [0,mp − 1] to 〈u, v〉 ∈

[〈0, 0〉, 〈m − 1, p − 1〉]. This can be proven as follows. CRM has been proven to be a perfect

address mapping [25], i.e. it can be formulated as a one-to-one mathematical function cr from

[0,mp− 1] to [〈0, 0〉, 〈m− 1, p− 1〉]. BCRM can be formulated as a mathematical function bcr

defined as following:

bcr(d) = f(cr(d))

f(〈u, v〉) = 〈(u− v) mod m, v〉

Function f is obviously a one-to-one function from [〈0, 0〉, 〈m−1, p−1〉] to [〈0, 0〉, 〈m−1, p−1〉].

Therefore, bcr is a one-to-one function from [0,mp− 1] to [〈0, 0〉, 〈m− 1, p− 1〉].

BCRM has the property of “row locality”: assume x is an integer that satisfies (x mod p) =

0, then x, x+ 1, . . . , x+ p− 1 will be mapped to the same row, i.e. the value of u is the same

www.manaraa.com

25

for those consecutive d values.

Using BCRM in Memory Address Mapping We let u be the global row address and

m be the number of all DRAM rows in the whole system, which is a power of two. We make

v be the index of memory super-block, which is so defined such that each row hosts exactly

7 memory super-blocks. Correspondingly, d is the global memory super-block address. The

scheme is feasible because in E3CC the number of utilized columns in a row is a multiple of 7,

as 63 columns are utilized for every 64 columns. For example, for the example in Figure 3.3

a memory super-block is 112/7 = 16 blocks, and for the example in Figure 3.4 a super-block

is 28/7 = 4 blocks. We assume that each row has 64 or a multiple of 64 super-columns, which

is valid for today’s memory device. As device capacity continues to increase, it will continue

to hold. After v is generated, the memory controller generates a sequence of column addresses

from v (plus the removed bits) for the corresponding data and ECC columns.

A merit of those non-power-of-two mappings using modulo operations is that fast and

efficient logic design exists for modulo operation (d mod p), particularly if p meets certain

property. In general case, assume d is an n-bit number of bits dn−1...d1d0, then

d mod p = (
n−1∑
i=0

((di · 2i) mod p)) mod p

The logic operations for (di · 2i) mod p can be done in parallel and so can be the operations to

calculate their sum. The logic design can be further optimized if p is a preset value, and even

more if p is a certain specific value [101]. Finally, with m being a power of two, “x mod m” is

simply to select the least-significant log2(m) bits of x.

3.3.4 Extra ECC Traffic and ECC-Cache

The E3CC design may require an extra column access (read or write operation) to retrieve

the ECC bits for a given memory request. For DDR3 DIMM of full rank size and 64B memory

block access, it takes a single column access to transfer 64B data, and therefore in the worst case

transferring the ECC bits may double the number of column accesses (effectively more memory

bursts). Since only 72B of the 128B data are immediately needed, the potential bandwidth

www.manaraa.com

26

overhead from the extra 56B transfer is 77.8% from the baseline. For 32-bit and 16-bit sub-

ranked DIMMs, for each memory access it takes 3 and 5 column accesses for a device to fetch

32B and 16B data, respectively, and their ECC bits. The amount of extra bandwidth usage is

24B and 8B per request and the percentage of traffic increase is 33% and 11%, respectively, from

the baseline in the worst case. For 8-bit sub-ranked DIMM, there is no bandwidth overhead.

DDR2 also supports burst length of four, which can be used to reduce the overhead. Low-

power DDR2 supports burst length of four and the rank size is 32-bit, so the percentage of

worst-case bandwidth overhead starts from 11% (transferring 80B for 72B) and disappears at

16-bit sub-ranking, if burst of four is used.

To reduce this overhead, we propose to include a small ECC-cache in the memory controller

to buffer and reuse the extra ECC bits. The cache is a conventional cache with a block size

of 8B, and it utilizes the spatial locality in memory requests. We find that a 64-block, fully-

associative cache is sufficient to capture the spatial locality for most workloads; set-associative

cache can also be used.

It is worth noting that a partial write of an ECC super-column in DRAM does not require

reading the ECC column first. DDRx supports the use of data mask (DM) for partial data

write. The DM has eight bits. On a write operation, each bit may mask out eight data pins

from writing, and thus the update can be done by 8B granularity. Furthermore, our design

utilizes the burst-chop-4 feature of DDR3 on ECC writes to reduce the memory traffic overhead

and power overhead from writing ECC bits.

3.3.5 Reliability and Extension

E3CC can correct single random bit error and detect double random bits error happening

in DRAM cells. The study on LOT-ECC [103] identifies other types of failures and errors,

including row-failure, column-failure, row-column failure, pin failure, chip failure and multiple

random bits error, which can be covered by LOT-ECC. The first four types are stuck-at errors,

and can be covered by flipping the checksum bit in the error protection code. If the same idea

is used in the error protection code of E3CC, E3CC can also detect a single occurrence of those

failures, but may not be able to correct them. E3CC cannot guarantee the immediate detection

www.manaraa.com

27

of a pin failure, because it may cause multiple-bit errors in an ECC word on E3CC. However, a

pin failure also causes stuck-at errors, which with a high probability will be quickly detected by

consecutive ECC checking. Similarly, a chip failure may also be quickly detected but cannot be

recovered. Note that LOT-ECC is stronger than E3CC at the cost of higher storage overhead

(26.5% vs. 14.1%) and lower power efficiency. We argue that the E3CC design is suitable for

consumer-level computers and devices that require memory reliability enhancement with low

impact on cost and power efficiency.

The flexibility of E3CC enables the use of other error protection code for improved storage

overhead, reliability, power efficiency, and performance. Conventional ECC memory using the

Hamming-based (72, 64) SECDED code has a storage overhead of 12.5%. Hamming code is

actually a special case of BCH codes with minimum distance of 3 [71]. For memory blocks of

64B cacheline size, one may use very long BCH code such as BCH(522, 512), BCH(532, 512),

and BCH(542, 512) codes, which are SEC, DEC and TEC (Single-, Double- and Triple-bit

Error Correcting), respectively, for 512-bit data block. The storage overhead ratio is 1.95%,

3.9% and 5.9%, respectively. To use BCH code in E3CC, another set of address mapping logic

may be needed.

3.4 Experimental Methodologies

We have built a detailed main memory simulator for the conventional DDRx and the sub-

ranked memory system and integrated it into the Marssx86 [78] simulator. In the simulator, the

memory controller issues device-level memory commands based on the status of memory chan-

nels, ranks and banks, and schedules requests by hit-first and read-first policy, using cacheline-

interleaving and page-interleaving. We did experiments with the two cacheline-interleaving

schemes in Figure 3.5; they are very close in the average performance. The first cacheline-

interleaving scheme is used in the presented results. The basic XOR-mapping [119] scheme is

used as the default configuration for page interleaving to reduce the bank conflict.

Table 3.3 shows the major parameters for the simulation platform. The simulator mod-

els Micron device MT41J256M8 [69] in full detail. To model the power consumption, we

integrate a power simulator into the simulation platform using the Micron power calculation

www.manaraa.com

28

methodology [70]. It also models the DDR3 low power modes, with a proactive strategy to

put memory device in power-down modes with fast exit latency. We follow the method of a

previous study [121] to break down memory power consumption into background, operation,

read/write and I/O power. The details of memory power model are introduced in Section 2.2.

The power parameters are listed in Table 3.4.

Parameter Value

Processor 4 cores, 3.2GHz, 4-issue per core,14-stage pipeline

Functional units 2 IntALU, 4 LSU, 2 FPALU

IQ, ROB and LSQ size IQ 32, ROB 128, LQ 48, SQ 44

Physical register num 128 Int, 128 FP, 128 BR, 128 ST

Branch prediction
Combined, 6k Bimodal + 6k Two-level, 1K RAS, 4k-entry

and 4-way BTB

L1 caches (per core)
64KB Inst/64KB Data, 2-way, 16B line, hit latency: 3-

cycle Inst,3-cycle Data
L2 cache (shared) 4MB, 8-way, 64B line, 13-cycle hit latency

Memory
DDR3-1600, 2 channels, 2 DIMMs/channel, 2

ranks/DIMM, 8 banks/rank
Memory controller 64-entry buffer, 15ns overhead for scheduling and timing

DDR3 DRAM latency DDR3-1600:11-11-11

Table 3.3: Major simulation parameters.

Parameters Value

Normal voltage 1.5V

Active precharge current 95mA
Precharge power-down standby cur-

rent
35mA

Precharge standby current 42mA

Active power-down standby current 40mA

Active standby current 45mA

Read burst current 180mA

Write burst current 185mA

Burst refresh current 215mA

Table 3.4: Parameters for calculating power for 2Gbit, x8 DDR3-1600(11-11-11) device.

www.manaraa.com

29

Workload Applications Workload Applications

MEM-1 mcf, libquantum, soplex, milc ILP-1 gobmk, sjeng, gcc, namd
MEM-2 sphinx3, soplex, libquantum, mcf ILP-2 gobmk, sjeng, gcc, perlbench
MEM-3 lbm, mcf, soplex, sphinx3 ILP-3 gobmk, sjeng, deaIII, perlbench
MEM-4 mcf, libquantum, lbm, sphinx3 ILP-4 gobmk, deaIII, namd, perlbench
MEM-5 soplex, milc, lbm, milc ILP-5 sjeng, gcc, namd, perlbench
MEM-6 libquantum, lbm, milc, sphinx3 ILP-6 gcc, deaIII, namd, perlbench
MIX-1 lbm, sphinx3, deaIII, perlbench MIX-2 lbm, milc, deaIII, namd
MIX-3 libquantum, gcc, milc, namd MIX-4 soplex, sjeng, libquantum, gcc
MIX-5 gobmk, sphinx3, mcf, perlbench MIX-6 mcf, soplex, gobmk, sjeng

Table 3.5: Workload specifications.

3.4.1 Statistical Memory MTTF Model

Intuitively, SECDED will improve the memory reliability compared with non-ECC DIMM.

However, few studies directly report the Mean Time To Failure (MTTF) in academy. We have

used a statistical MTTF model suggested by a previous study [75]. For a memory system using

SEC (Single-bit Error Correcting) codes, the system is considered operational until there are

two bits of error occurred within a single codeword. Assume the generation of failure bit in

memory is independent, random and follows Poisson process within time period T . We build

a fault simulator based on this error model. Monte Carlo method is used and random errors

are generated and injected to a memory system. When an error is injected, a check function

is called to estimate if the number of error bits in one codeword exceed the ECC capability.

If so, the simulator reports a system failure and records the failure time. Each experiment is

repeated for a sufficient number of times, and then the failure time records are used to calculate

the MTTF using the above MTTF model.

We simulate a quad-core system with each core running a distinct application from the

SPEC2006 [98] benchmark suits. We follow the method used in a previous study [52] to group

those benchmarks into three categories: MEM (memory-intensive), ILP (compute-intensive)

and MIX (mix of memory-intensive and compute-intensive) based on their L2 cache misses per

1000 instructions (L2 MPKI). The MEM applications are those benchmarks with L2 MPKI

greater than 10 and ILP applications are those with less than one L2 MPKI.

Table 3.5 shows 18 four-core multi-programming workloads randomly selected from those

www.manaraa.com

30

applications. The MEM workloads consist of memory-intensive applications, the ILP workloads

contain compute-intensive applications, and the MIX workloads have the MEM benchmarks

and ILP benchmarks mixed together. For each workload, we create a checkpoint after all

the benchmarks in one workload running to their typical phases. Then we collect the detailed

simulation results from user space for 200 million instructions.The performance is characterized

using SMT weighted speedup [96]
∑n

i (IPCmulti[i]/IPCsingle[i]), where n is the total number

of applications running, IPCmulti[i] is the IPC value of application i running under multi-core

environment and IPCsingle[i] is the IPC value of the same application running alone.

3.5 Experimental Results

In this section, we present and analyze the evaluation results of E3CC, including perfor-

mance, memory traffic overhead, and power efficiency. We have conducted experiments with the

full rank, 32-bit sub-ranked, and 16-bit sub-ranked memories, and with cacheline-interleaving

and page-interleaving.

3.5.1 Overall Performance of Full-Rank Memories

It is straightforward to use a conventional DDR3-1600 non-ECC memory as a baseline for

performance comparison. However, we also simulated a pseudo DDR3-1422 ECC DRAM with

a 72-bit width data bus running at 711MHz since it provides the same raw data bandwidth

with E3CC with a 64-bit data bus running at 800MHz. Note that the data rate of 1422MHz is

an artificial setting not used in practice.

Figure 3.7a compares the performance of the full-rank E3CC DDR3-1600 memory, without

and with ECC-cache, against full-rank DDR3-1600 baseline and the full-rank pseudo DDR3-

1422 memory. We first focus on the memory-intensive workloads. Without ECC-cache, E3CC

incurs an average performance loss of 9.1% and 13.7% with cacheline- and page- interleaving,

respectively. The performance loss comes from extra column access for ECC bits, which fetches

more ECC bits than necessary and thus incurs bandwidth overhead. It will be analyzed in

Section 3.5.3. ECC-cache effectively reduces the bandwidth overhead. With ECC-cache, the

performance loss is reduced to 5.1% with cacheline-interleaving and 7.4% with page-interleaving.

www.manaraa.com

31

When E3CC is compared with pseudo DDR3-1422, the performance overhead is 3.4% and 4.5%

for cacheline- and page- interleaving, respectively.

For mixed workloads, E3CC without ECC-cache incurs an average performance overhead

of 3.2% and 5.7% with the cacheline- and page- interleaving, respectively. With ECC-cache,

the performance overhead is reduced to 2.0% for cacheline-interleaving and 3.4% for page-

interleaving. When E3CC is compared with DDR3-1422, the performance losses are 1.0% and

2.0%, respectively. For ILP workloads, the average performance overhead is under 0.3% for

both interleaving schemes, as ILP workloads are not sensitive to memory performance from the

beginning.

3.5.2 Overall Performance of Sub-Ranked Memories

Figure 3.7b compares the performance of 32-bit sub-ranked E3CC DDR3-1600 memories

with sub-ranked DDR3-1600 baseline and pseudo DDR3-1422 memories. With sub-ranking,

the bandwidth overhead from fetching ECC bits is reduced significantly as discussed in Sec-

tion 3.3.4. For memory-intensive workloads and without ECC-cache, the average performance

overhead is 5.6% and 9.5% with cacheline- and page-interleaving, respectively. With ECC-

cache, the overhead is reduced to 3.7% and 5.5%, respectively. When E3CC is compared

with DDR3-1422, the overhead is further reduced to 1.3% and 1.6%, respectively. For mixed

workloads and without ECC-cache, the performance overheads are 2.3% and 4.0% from DDR3-

1600 with cacheline- and page-interleaving, respectively; and with ECC-cache, the overhead is

reduced to 1.7% and 2.5%, respectively. When E3CC is compared with DDR3-1422, the per-

formance difference is almost negligible.

Figure 3.7c compares the performance of 16-bit sub-ranked memories of the E3CC DDR3-

1600 type against the sub-ranked DDR3-1600 baseline and the pseudo DDR3-1422 type. For

memory-intensive workloads and without ECC-cache, the performance overhead is 4.3% and

6.5% for cacheline- and page-interleaving, respectively. With ECC-cache, the overhead is re-

duced to 2.9% for cacheline-interleaving and 3.6% for page-interleaving. When compared to

DDR3-1422, E3CC even improves the performance on page-interleaving. Although this sce-

nario seems to be counter-intuitive, it is possible because the fetch of extra ECC bits has an

www.manaraa.com

32

0.50

0.60

0.70

0.80

0.90

1.00

1.10

IL
P-

1
IL

P-
2

IL
P-

3
IL

P-
4

IL
P-

5
IL

P-
6

M
IX

-1

M
IX

-2

M
IX

-3

M
IX

-4

M
IX

-5

M
IX

-6

M
EM

-1

M
EM

-2

M
EM

-3

M
EM

-4

M
EM

-5

M
EM

-6

IL
P-

AV
G

M

IX
-A

V
G

M

EM
-A

V
G

IL

P-
1

IL
P-

2
IL

P-
3

IL
P-

4
IL

P-
5

IL
P-

6
M

IX
-1

M

IX
-2

M

IX
-3

M

IX
-4

M

IX
-5

M

IX
-6

M

EM
-1

M

EM
-2

M

EM
-3

M

EM
-4

M

EM
-5

M

EM
-6

IL

P-
AV

G

M
IX

-A
V

G

M
EM

-A
V

G

Full-rank, cacheline-interleaving Full-rank, page-interleaving

DDR3-1422 E3CC with ECC-Cache E3CC w/o ECC-Cache

SM
T-

sp
ee

du
p

no
rm

al
iz

ed
 to

 D
D

R
3-

16
00

(a) Full-rank E3CC memory vs. full-rank DDR3-1600 memory, with full-rank DDR3-1422 included.

0.50
0.60
0.70
0.80
0.90
1.00
1.10

IL
P-

1
IL

P-
2

IL
P-

3
IL

P-
4

IL
P-

5
IL

P-
6

M
IX

-1

M
IX

-2

M
IX

-3

M
IX

-4

M
IX

-5

M
IX

-6

M
EM

-1

M
EM

-2

M
EM

-3

M
EM

-4

M
EM

-5

M
EM

-6

IL
P-

AV
G

M

IX
-A

V
G

M

EM
-A

V
G

IL

P-
1

IL
P-

2
IL

P-
3

IL
P-

4
IL

P-
5

IL
P-

6
M

IX
-1

M

IX
-2

M

IX
-3

M

IX
-4

M

IX
-5

M

IX
-6

M

EM
-1

M

EM
-2

M

EM
-3

M

EM
-4

M

EM
-5

M

EM
-6

IL

P-
AV

G

M
IX

-A
V

G

M
EM

-A
V

G

32-bit subranked,cacheline-interleaving 32-bit subranked, page_interleaving

DDR3-1422 E3CC with ECC-Cache E3CC w/o ECC-Cache

SM
T-

sp
ee

du
p

no
rm

al
iz

ed
 to

 D
D

R
3-

16
00

(b) 32-bit sub-ranked E3CC memory vs. 32-bit sub-ranked DDR3-1600 memory, with 32-bit sub-ranked
DDR3-1422 included.

0.50
0.60
0.70
0.80
0.90
1.00
1.10

IL
P-

1
IL

P-
2

IL
P-

3
IL

P-
4

IL
P-

5
IL

P-
6

M
IX

-1

M
IX

-2

M
IX

-3

M
IX

-4

M
IX

-5

M
IX

-6

M
EM

-1

M
EM

-2

M
EM

-3

M
EM

-4

M
EM

-5

M
EM

-6

IL
P-

AV
G

M

IX
-A

V
G

M

EM
-A

V
G

IL

P-
1

IL
P-

2
IL

P-
3

IL
P-

4
IL

P-
5

IL
P-

6
M

IX
-1

M

IX
-2

M

IX
-3

M

IX
-4

M

IX
-5

M

IX
-6

M

EM
-1

M

EM
-2

M

EM
-3

M

EM
-4

M

EM
-5

M

EM
-6

IL

P-
AV

G

M
IX

-A
V

G

M
EM

-A
V

G

16-bit subranked, cacheline-interleaving 16-bit subranked, page-interleaving

DDR3-1422 E3CC with ECC-Cache E3CC w/o ECC-Cache

SM
T-

sp
ee

du
p

no
rm

al
iz

ed
 to

 D
D

R
3-

16
00

(c) 16-bit sub-ranked E3CC memory vs. 16-bit sub-ranked DDR3-1600 memory, with 16-bit sub-ranked
DDR3-1422 included.

Figure 3.7: Performance of the E3CC DDR3-1600 memories and the baseline DDR3-1600

memories of different rank sizes. E3CC denotes E3CC.

www.manaraa.com

33

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

M
EM

-1

M
EM

-2

M
EM

-3

M
EM

-4

M
EM

-5

M
EM

-6

M
EM

-a
vg

M
EM

-1

M
EM

-2

M
EM

-3

M
EM

-4

M
EM

-5

M
EM

-6

M
EM

-a
vg

Page-interleaving Cacheline-interleaving

Full
32-bit
16-bit

N
or

m
al

iz
ed

 m
em

or
y

tra
ff

ic

Figure 3.8: The extra read memory traffic caused by E3CC when ECC-cache is used.

effect of prefetch.

3.5.3 Memory Traffic Overhead and ECC-Cache

Figure 3.8 presents memory traffic overhead caused by E3CC when ECC-cache is used. As

memory read is critical to the system performance and only memory-intensive workloads are

sensitive to the memory traffic overhead, the figure presents only the memory read traffic for the

memory-intensive workloads. The average overhead is 29.0%, 17.1% and 6.5% for full-rank, 32-

bit sub-ranked and 16-bit sub-ranked memories, respectively, with cacheline-interleaving. And

with page-interleaving, the overhead is 9.8%, 7.3% and 4.1% for those three rank configura-

tions, respectively. The overhead is less with page-interleaving than with cacheline-interleaving

because page-interleaving retains row-level spatial locality in the program address space and

the ECC-cache can well capture the spatial locality. ECC-cache is still effective for cacheline

interleaving, as it still captures the spatial locality within multiple blocks sharing the same

ECC column.

Figures 3.9a and 3.9b show the ECC cache read hit rates for cacheline- and page-interleaving,

respectively. Overall, ECC-cache has a high read hit rate for memory-intensive workloads. The

average hit rates are 62.5% and 87.2% for x64-rank DIMM with cacheline-interleaving and page-

interleaving, respectively. Cacheline-interleaving distributes the memory requests among all the

ranks, which improves the accessing parallelism and reduces the row buffer hit rate. Therefore,

ECC cache hit rate for cacheline-interleaving is smaller than that of page-interleaving mode.

www.manaraa.com

34

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

MIX
-1

MIX
-2

MIX
-3

MIX
-4

MIX
-5

MIX
-6

MEM-1

MEM-2

MEM-3

MEM-4

MEM-5

MEM-6

MIX
-AVG

MEM-AVG

Full

32-bit

16-bit

(a) Cacheline-interleaving

0%

20%

40%

60%

80%

100%

MIX
-1

MIX
-2

MIX
-3

MIX
-4

MIX
-5

MIX
-6

MEM-1

MEM-2

MEM-3

MEM-4

MEM-5

MEM-6

MIX
-AVG

MEM-AVG

Full

32-bit

16-bit

(b) Page-interleaving

Figure 3.9: ECC-cache read hit rate for mixed and memory-intensive workloads with cacheline-

and page-interleaving.

As the rank size decreases to x32 and x16, the cache hit rate is reduced because the program

locality is further broken as row buffer size shrinks. On average, the row buffer hit rates are

46.4% and 40.3% with cacheline-interleaving with x32 and x16 rank size, respectively; and

78.1% and 62.5% with page-interleaving, respectively.

3.5.4 Power Efficiency of E3CC Memories

As memory-intensive workloads are power hungry applications, we focus on the power

efficiency of these workloads. Figure 3.10 compares the power breakdown of full-rank and sub-

ranked memory without and with ECC. Sub-ranked memories without ECC are shown to give

a baseline reference for the corresponding sub-ranked E3CC memories, so as to show the power

efficiency of E3CC in each type of sub-ranked memory. Both are DDR3-1600 type. Consis-

tent with previous studies [121, 2, 1], sub-ranked memories reduce memory operation power

significantly as the sub-rank size decreases. The background power is also reduced moderately

because of the increased number of sub-ranks over the number of ranks, as more sub-ranks can

www.manaraa.com

35

0
2
4
6
8

10
12
14
16
18

Fu
ll

Fu
ll

E3
C

C

32
-b

it
32

-b
it

E3
C

C

16
-b

it
16

-b
it

E3
C

C

Fu
ll

Fu
ll

E3
C

C

32
-b

it
32

-b
it

E3
C

C

16
-b

it
16

-b
it

E3
C

C

Fu
ll

Fu
ll

E3
C

C

32
-b

it
32

-b
it

E3
C

C

16
-b

it
16

-b
it

E3
C

C

Fu
ll

Fu
ll

E3
C

C

32
-b

it
32

-b
it

E3
C

C

16
-b

it
16

-b
it

E3
C

C

Fu
ll

Fu
ll

E3
C

C

32
-b

it
32

-b
it

E3
C

C

16
-b

it
16

-b
it

E3
C

C

Fu
ll

Fu
ll

E3
C

C

32
-b

it
32

-b
it

E3
C

C

16
-b

it
16

-b
it

E3
C

C

Fu
ll

Fu
ll

E3
C

C

32
-b

it
32

-b
it

E3
C

C

16
-b

it
16

-b
it

E3
C

C

MEM-1 MEM-2 MEM-3 MEM-4 MEM-5 MEM-6 MEM-Avg

I/O Read/Write Operation Background

Po
w

er
 c

on
su

m
pt

io
n

(W
at

t)

(a) Cacheline-interleaving

0

2

4

6

8

10

12

Fu
ll

Fu
ll

E3
C

C

32
-b

it
32

-b
it

E3
C

C

16
-b

it
16

-b
it

E3
C

C

Fu
ll

Fu
ll

E3
C

C

32
-b

it
32

-b
it

E3
C

C

16
-b

it
16

-b
it

E3
C

C

Fu
ll

Fu
ll

E3
C

C

32
-b

it
32

-b
it

E3
C

C

16
-b

it
16

-b
it

E3
C

C

Fu
ll

Fu
ll

E3
C

C

32
-b

it
32

-b
it

E3
C

C

16
-b

it
16

-b
it

E3
C

C

Fu
ll

Fu
ll

E3
C

C

32
-b

it
32

-b
it

E3
C

C

16
-b

it
16

-b
it

E3
C

C

Fu
ll

Fu
ll

E3
C

C

32
-b

it
32

-b
it

E3
C

C

16
-b

it
16

-b
it

E3
C

C

Fu
ll

Fu
ll

E3
C

C

32
-b

it
32

-b
it

E3
C

C

16
-b

it
16

-b
it

E3
C

C

MEM-1 MEM-2 MEM-3 MEM-4 MEM-5 MEM-6 MEM-avg

I/O Read/Write Operation Background

Po
w

er
 c

on
su

m
pt

io
n

(W
at

t)

(b) Page-interleaving

Figure 3.10: Memory power breakdown into operation, read/write, I/O and background power

for full-rank and sub-ranked memories with and without ECC. E3CC denotes E3CC; ECC-cache

is used. Only memory-intensive workloads are shown. Sub-ranked memories without ECC are

used as reference baseline, with power calculated as that of regular sub-ranked memories plus

12.5% overhead. Both the baseline and E3CC are DDR3-1600 type.

be put into fast power-down mode to save background power. For page-interleaving, operation

power is not a significant component, because the row-buffer hit rate of those workloads is high

and therefore a less number of precharges and activations are needed.

E3CC achieves good power efficiency when compared with the baseline. The full-rank

baseline is actually the conventional full-rank ECC DIMM. The sub-ranked baselines correspond

to a design that extends sub-ranked memories ideally to implement ECC; for example, for 32-

bit sub-ranked memory of four x8 device per sub-rank, it extends the sub-rank bus to 36-bit

and adds an x4 device to store ECC bits, assuming that the x4 device consumes half power of

a x8 device.

www.manaraa.com

36

We first focus on the full-rank memory. For cacheline-interleaving, E3CC increases the over-

all power rate of full-rank memory by 5.6% from the baseline. Regarding each power component,

the read/write power increases by 52.4% and I/O power by 23.7% but the background power

decreases by 9.9% and operation power by 4.5%. For page-interleaving, E3CC is almost the

same as the baseline, with the overall power rate decreased by 0.1%. It increases the read/write

power by 34.0% and I/O power by 9.1% but decreases the background power by 10.8% and

operation power by 25.1%. The read/write and I/O power increases come from accessing extra

ECC bits. ECC-cache is more effective on page-interleaving than on cacheline-interleaving, and

therefore the increases are less on the page-interleaving than on the cacheline-interleaving. The

background power is reduced because, compared with the baseline, there are 8 devices per rank

instead of 9. Operation power is reduced partially for a similar reason, as there are 8 devices

per rank to precharge and activate instead of 9. Additionally, we have found that the average

row buffer miss rate of page-interleaving is 15.9% with E3CC and 17.5% with the baseline,

which means less precharges and activations with E3CC. For all settings, because of the BCR

mapping, E3CC tends to have lower row-buffer miss rate than the baseline.

The power efficiency of E3CC vs. the baseline increases with sub-ranked memory because

of the decreased memory traffic overhead. For 32-bit sub-ranked memory with cacheline-

interleaving, E3CC on average reduces the overall power rate by 1.1%, with 10.7% decrease

of background power, 9.9% decrease of operation power, 22.3% increase of read/write power,

and 8.0% increase of I/O power. With page-interleaving, on average it reduces the overall power

rate by 4.6%, with 10.9% decrease of background power, 20.2% decrease of operation power,

13.6% increase of read/write power, and 0.6% increase of I/O power. For 16-bit sub-ranked

memory with cacheline-interleaving, E3CC on average reduces the overall power rate by 7.7%,

with changes of -11.0%, -14.7%, +1.8% and -5.2% on background, operation, read/write and

I/O power, respectively. With page-interleaving, it on average reduces the overall power rate by

6.1%, with changes of -10.5%, -13.4%, +5.4% and -2.1% on background, operation, read/write

and I/O power, respectively.

We have also found that while ECC-cache reduces the memory ECC read traffic efficiently,

it does not reduce the memory ECC write traffic as well because there is much less spatial

www.manaraa.com

37

locality in the write traffic than in the read traffic. The memory ECC write traffic is caused by

last-level cache writebacks, whose spatial locality is mostly lost because the relative timing of

writebacks is different from the relative timing of demand misses on the same set of memory

blocks. Although the extra write traffic only has a moderate impact on the performance of

those workloads, it does increase the read/write and I/O power. Our design uses the burst-

chop-4 to reduce the ECC write traffic and power consumption. The use of a different processor

cache writeback policy, for example eager writeback [55] or a revised scheme, may restore the

spatial locality in cache writebacks and therefore may help reduce this power increase. If so,

E3CC will be even more power-efficient.

3.5.5 Evaluation of Using Long BCH Code

As discussed in Section 3.3.5, the flexibility of E3CC may allow the use of very long BCH

code for improved storage efficiency and reliability. Because the storage overhead is reduced,

power efficiency and performance will also be improved. We have applied a statistical MTTF

model suggested by a previous study [75] and built a Monte-Carlo simulator that assumes the

generation of failure bit is independent, random and follows the Poisson process. The simulation

results have been further verified with mathematical model for evaluation. We have simulated

a 4GB memory system using BCH(512,522), BCH(512,532) and BCH(512,542), which are

SEC, DEC and TEC codes, respectively, and with 2.0%, 3.9% and 5.9% storage overhead,

respectively. We found that those long BCH codes may improve MTTF by two, four, and five

orders of magnitude, respectively.

3.6 Summary

In this chapter, we have presented E3CC, a complete solution of memory error protection

for sub-ranked and low-power memories. A novel address mapping scheme called BCRM has

been found to implement page-interleaving on E3CC without using expensive integer division.

A simple and effective solution called ECC-cache is presented to reduce extra ECC traffic. We

have thoroughly evaluated the performance and power efficiency of E3CC. E3CC is suitable for

consumer-level computers and mobile devices used in applications that require a certain degree

www.manaraa.com

38

of reliable computing but desire a low impact on cost and power efficiency. E3CC does not

require any changes to memory devices or modules, further reducing the cost of manufacturing.

Furthermore, using ECC or not can be configured at system booting time, giving users the

flexibility to make trade-off between reliability, performance, and power efficiency.

www.manaraa.com

39

CHAPTER 4. EXPLORING FLEXIBLE MEMORY ADDRESS

MAPPING AT DEVICE LEVEL FOR SELECTIVE ERROR

PROTECTION

Memory error protection is increasingly important as memory density and capacity increase;

however, the protection comes with inherent storage and energy overhead. Selective error

protection (SEP) is desirable for reducing the overhead, particularly on mobile computers

and devices. In this chapter, we further explore flexible and efficient memory address mapping

schemes at DRAM device level to support SEP on commodity memory devices and conventional

modules in a reconfigurable manner, such that the physical memory address space can be split

into two memory regions without and with memory error protection, respectively.

4.1 Introduction

Diverse applications have been developed on mobile systems including tablets and smart-

phones. These applications react differently to memory errors. For most common smartphone

apps, including web-browsing, gaming, video player, audio player, and others, the program

data is generally non-critical or insensitive to memory errors. For example, an error in a frame

buffer during video processing may cause a pixel disruption in one frame, which is tolerant to

human eyes [95, 63]. In contrast, some apps like mobile banking and financing, or partial code

of apps like loop-control variables and others, are sensitive to errors. A recent study proposes

a methodology to quantify the difference; for example, a variable “ZCH” in lex benchmark is

evaluated to be around 1188 times more vulnerable than another variable “yychar” in the same

program [68]. For video processing, while errors in a frame buffer are not disruptive, errors

in vertex arrays and texture contents may cause visual discomfort because they disrupt the

www.manaraa.com

40

appearance of many frames [95].

Memory error protection in mobile systems must be done carefully. On one hand, in the

worst cases memory errors may incur severe consequences to systems and users, i.e. data

corruption, visual discomfort, security vulnerability [27, 108] and others. On the other hand, it

is a waste to protect the entire memory, because memory error protection incurs extra power

consumption and reduces battery usage time. Therefore, it is usually desired to only protect

critical code and data and leave the rest unprotected. For this purpose, a recent study proposes

a framework of Selective Error Protection (SEP) [68]. In that framework, the OS and compiler

place critical data (including code thereafter) in a designated protected region in the physical

memory address space based on a profile-based data criticality analysis. For example, data

and variables of high access frequency may be selected. The evaluation confirms that SEP can

provide high error coverage with low energy consumption.

However, the study does not fully investigate the memory system design to support an ECC

(Error Correcting Code)-protected region and a non-protected region; it simply assumes such

a mechanism exists, and then focuses on the higher layers of the framework. It is actually very

challenging to design such a memory system for mobile computers and devices or any computer

of a simple memory organization.

In this chapter, we investigate the mechanism to support an error-protected region and a

non-protected region on a simple memory system made by commodity memory devices. Specif-

ically, such a memory system can be viewed as a collection of memory devices organized in

channels and ranks without builtin support for ECC. We first employ Embedded ECC [121] to

support ECC in the protected region because embedded ECC is energy-efficient and does not

require an extra device to store ECC bits. The new challenge, however, is to fully address the

device-level memory address mapping with two memory regions.

This work is partially motivated by our previous work E3CC, a form of Embedded ECC

which stores ECC bits with data bits in the same DRAM row. In E3CC, we design an efficient

embedded ECC scheme for narrow-ranked low-power DRAM memories considering both relia-

bility and energy efficiency. Because of ECC embedding, the effective memory capacity is no

longer power-of-two. We therefore propose BCRM (Biased Chinese Remainder Mapping) for

www.manaraa.com

41

efficient device-level memory address mapping without using division. BCRM is used for the en-

tire physical memory address space. This chapter addresses a different problem, namely how to

split the address space into two regions with efficient device-level memory address mapping. In

our framework, we assume embedded ECC is used in the protected region. The non-protected

region, however, may not use power-to-two mapping because the two regions co-exist in the

same memory system and affect each other. With hardware support and software management,

their boundary may shift to vary the size of the two regions. The device-level address mapping

must accommodate this change.

We propose novel address mapping schemes to address the challenge. First, we extend

the CRM (Chinese Remainder Mapping) scheme to non-prime memory systems [25]. CRM

is designed for prime memory systems decades ago and it applies CRT (Chinese Remainder

Theorem) to do address translation. Similar to CRM, the proposed scheme uses modulo opera-

tion to replace Euclidean division. Second, for cases that CRM-based mapping is not adequate

to maintain DRAM accesses locality, we propose a section-based mapping scheme. It parti-

tions the coming physical addresses into sections based on greatest common divisor and applies

modulo-based mapping section by section. Generally, DRAM device-level address mapping ei-

ther distributes memory requests evenly among memory units for high parallelism or maintains

row buffer locality for low accessing latency. We thus propose adjustment-factors for the pro-

posed mapping schemes to maintain one of the two common properties1. The proposed schemes

can have multiple variations by extending different adjustment-factors or by combining these

schemes together. They, therefore, are flexible to favor system requirements in practice.

We have made the following contributions in this chapter:

• We propose C-SCM (CRM based Super-Column Mapping), which groups multiple columns

as a super-column to apply CRM.

• We propose C-SGM (CRM based Super-Group Mapping), which groups both rows and

columns as super-row and super-column, respectively, to apply CRM.

1In study [47], it shows that four cacheline blocks interleaving is optimal for many-core system considering
power, performance and fairness. It is not discussed in detail in our study but our proposed schemes can be
extended to maintain such a property.

www.manaraa.com

42

• We propose S-SRM (Section based Shift-Row Mapping), which is not based on CRM. It

can be adjusted to present good row buffer locality.

• We further propose adjustment-factors including adjusting-factor, breaking-factor and

shifting-factor. The proposed mapping schemes can have multiple variations by applying

different factors or by combining different schemes to present different properties. It hints

the design flexibility in practice to favor system requirements.

The rest of this chapter is organized as follows. Section 4.2 introduces the background and

related work of the study. In Section 4.3, the SEP design challenges are presented in detail by

showing an example mapping layout. Section 4.4 devises multiple address mapping schemes

for different system requirements of SEP. In Section 4.5, we discuss various scenarios that our

proposed mapping schemes can be applied and Section 4.6 concludes this chapter.

4.2 Background and Related Work

4.2.1 Diverse Sensitivities of Data, Variables and Applications

Intuitively, data and variables of application programs may not be uniformly sensitive to

memory errors, in the sense how an error may impact a program’s output or behavior observed

by users or other computer systems. First, within an application, data and variables may exhibit

diverse sensitivities to memory errors. For example, pixel data in an image or a video clip is

insensitive to errors as a single pixel failure is mostly invisible to users. However, errors in other

data structures, like the texture contents or loop control variables, can lead to much more severe

consequences. A recent study [68] shows an example that variable “ZCH” in lex benchmark is

around 1,188 times more vulnerable to errors than variable “yychar” in 5,000 experiments. It

conducts a profile-based criticality evaluation and shows a case that 35.8% error protection can

achieve around 99% fault coverage. Another study [110] observes that the dynamic segment of

program memory is 18 times more sensitive to errors than the static segment. Second, different

applications show different levels of sensitivity to memory errors. For example, gaming, audio,

video and other multimedia applications, and web browsers are insensitive to memory errors

while banking, financing or mission critical applications are sensitive to errors. A study [97] has

www.manaraa.com

43

proposed PVF (Program Vulnerability Factor) to quantify application vulnerability to errors

and found diverse PVFs of programs; for example, PVFapplu = 86.2% and PVFequake = 48.9%

for the two SPEC CPU2000 benchmark programs.

4.2.2 DRAM Accessing Page Policies

There are two commonly used page policies: close-page and open-page. Close-page policy

attempts to precharge the opened row after column access so that incoming requests to other

rows can be served immediately. It targets to take advantage of memory access parallelism to

improve DRAM performance. Open-page policy, however, maintains a row open after column

access. It favors applications with high row buffer locality so that the following requests hit the

opened row and can be accessed without opening the row again. In general, open-page policy is

less energy efficient than close-page policy as it consumes more power to maintain a row open.

However, open-page policy can be more efficient for some applications as less row activations

are required. These two policies are equally important in practice and their variants have been

widely used among commodity machines.

4.2.3 Related Work

Memory error protection has been widely studied [113, 114, 103, 73, 68]. Virtualized

ECC [113, 114] proposes to maintain ECC in memory data space and relies on last level cache

to cache unused ECC to reduce memory traffic. The design is flexible and efficient compared

to conventional SECDED DIMM. LOT-ECC [103] proposes a tiered ECC protection to pro-

vide Chipkill-level protect with merely nine (x8) DRAM devices. Archshield [73] proposes an

architectural-level framework to protect fabrication faulty cells caused by extreme scaling of

DRAM. All those studies apply error protection to the entire memory space. A recent study [68]

proposes SEP for low-cost memory protection, which is closely related to our work. The details

have been discussed in Section 4.1. Other works [12, 56] also discuss selective data protections.

By comparison, this work is focused on device-level memory address mapping to support SEP.

www.manaraa.com

44

One DIMM banks

Non-ECC region

ECC region

Figure 4.1: Example row-index based partitioning for selective protection. Part of the rows on

all banks are protected by ECC while others are not.

4.3 Problem Presentation

When memory space is partitioned into two regions, the effective capacity of the two re-

gions may no longer be power-of-two. It introduces challenges of DRAM device-level address

decomposition given that complex Euclidean division should be avoided [25]. In this section,

we analyze the problem in detail and show an example mapping layout to motivate our study.

4.3.1 DRAM Device-Level Address Mapping

In Chapter 3, the detailed DRAM address mapping of cacheline- and page- interleaving

schemes are presented. As shown in Figure 3.5, cacheline-interleaving scheme maps the least

significant bits of block address to channel index, followed by DIMM2, rank, etc. It attempts

to map continuous memory requests evenly to different channels, DIMMs, ranks and others.

Therefore, it typically works with close-page policy for high parallelism. On the contrary, page-

interleaving scheme breaks the least significant bits to column indexes. It therefore maintains

DRAM row buffer locality as continuous addresses within a page boundary are mapped to the

same DRAM row. With open-page policy, page-interleaving scheme retains the spatial locality

in a program’s access pattern and reduces memory access latency. These two interleaving-

schemes are equally important in practice, similar to the two page policies, as they present either

high parallelism or high locality. We thus denote the two properties as access-parallelism and

access-locality, respectively, to simplify our presentation, and our proposed mapping schemes

should retain these properties.

2If DIMM is not applicable like in smartphones, number of its index bits is 0.

www.manaraa.com

45

4.3.2 Address Mapping Issue in SEP

In SEP, memory space is partitioned into two regions for different error protection strategies.

In order to make the partitioning flexible and generic, we divide the two regions by row index in

each bank. Figure 4.1 shows an example partitioning. For rows in each bank with row indexes

greater than a given parameter, they are protected by ECC and the remaining rows are not.

This partitioning is flexible as a typical DDRx device contains a large number of rows, 32K

for example. One can alternatively partition the space by other indexes, i.e. channel, DIMM,

rank, bank, etc. However, there are drawbacks. First, partitioning by channel, DIMM, rank or

bank presents less flexibility as the number of those units can be limited in a system. Moreover,

partitioning by column index is inappropriate as it reduces page size of one region and thus

the maximum page locality. In addition, all those alternatives share the same issue with row-

indexed partitioning in SEP implementation as one region might have a non-power-of-two size.

Therefore, all of our following discussions assume row-indexed partitioning.

The major concern with partitioning is how to map a physical address to a designated

region since its capacity may not be power-of-two. Conventional interleaving schemes require a

power-of-two system for address decomposition. Without this prerequisite, the mapping can be

wrong. To further clarify the problem, we show an example below. Without losing generality,

all channel, DIMM, rank and bank indexes are ignored in the presentation for simplicity. The

mapping issue is thus reduced to map a physical address d ∈ [0, R ·C − 1] to a 2D array LR×C .

Let R = 8, C = 8 in entire space. In a case that property of access-parallelism is required by

the system, without partitioning, cacheline-interleaving scheme can be employed. The layout

is shown in Table 4.1. With cacheline-interleaving scheme, the lower three bits of the address

are the row index and the upper three bits are the column index. For example, address 49

(110001 in binary) maps to row 1 and column 6 (starting from 0) since row index and column

index are 001 and 110, in binary, respectively.

However, conventional address mapping may not work when the space is partitioned into

two regions. Assume an example partitioning ratio of 3 : 1 for non-ECC region and ECC

region, the upper six rows are thus not protected while the remaining two rows are protected

www.manaraa.com

46

row/col 0 1 2 3 4 5 6 7

0 0 8 16 24 32 40 48 56

1 1 9 17 25 33 41 49 57

2 2 10 18 26 34 42 50 58

3 3 11 19 27 35 43 51 59

4 4 12 20 28 36 44 52 60

5 5 13 21 29 37 45 53 61

6 6 14 22 30 38 46 54 62

7 7 15 23 31 39 47 55 63

Table 4.1: An example layout of the entire space with cacheline-interleaving scheme assuming

R = 8, C = 8.

row/col 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 8 9 10 11 12 13 14 15

2 16 17 18 19 20 21 22 23

3 24 25 26 27 28 29 30 31

4 32 33 34 35 36 37 38 39

5 40 41 42 43 44 45 46 47

Table 4.2: An example layout with page-interleaving scheme for the region with six rows without

ECC protection.

by ECC based on the row-indexed partitioning. With such partitioning, addresses d ∈ [0, 47]

are required to map to L6×8, namely row [0, 5] by column [0, 7]. As there are merely six rows

in the non-protected region, it is challenging to apply cacheline-interleaving scheme. If one

simply takes the last three bits of physical address as row index, the addresses d ∈ [0, 47] are

mapped to L8×6 instead of the required L6×8. One can propose to use page-interleaving scheme

to map addresses into L6×8 as shown in Table 4.2. However, it presents access-locality instead

of the required access-parallelism. One can even propose complex division-based mapping

scheme. However it is not allowed in practice due to division complexity and harm to system

performance and power efficiency as presented in Chapter 3. We thus devise novel address

mapping schemes to resolve this challenge for implementation of selective protection.

www.manaraa.com

47

D B4 D D D D D D E D D D D D D D D E …...

ECC2rows

non-ECC2
rows

The25th DRAM2device2in2a28x82
DIMM2with282internal2banks

The22nd block2within2a2row.2The2512-bit2block2splits2into2eight264-
bit2sub-blocks2and2distributes2to2eight2x82DRAM2devices

B0 B1 B2 B3 B4 B5 B6 B7

D D D D D D D D D D D D D D D D …...D D

Address2
comparator

Figure 4.2: Overview of SEP design and data/ECC layout. Cacheline size is 512 bits inside a

row and SECDED (72,64) code is applied for error protection.

4.4 Novel Address Mapping Schemes

In this section, we first present the particular SEP design and then devise generic address

mapping schemes mathematically, considering various combinations of number of rows and

columns. In the end, we show case studies for applying the proposed mapping schemes on real

DDRx memory system for selective protection.

4.4.1 SEP Design Overview

In SEP memory, one region is reserved to be protected by ECC. Memory data is selectively

transferred between memory controller and DRAM devices via ECC unit if its address is within

the protected region. The memory controller maintains in a register the address of the boundary

between the two regions. For addresses greater than or equal to the boundary address, the

requests are protected by ECC. Otherwise, ECC circuitry is bypassed. The SEP framework

can be referred to study [68].

At DRAM level, the error-protected region requires extra storage for ECC redundancy. As

part of memory space is not protected, the conventional way to add an extra DRAM device is

inappropriate. We employ the embedded ECC scheme [121], which stores ECC bits with data

in the same DRAM row to reduce the energy consumption in accessing ECC bits. Figure 4.2

presents an example data and ECC layout of the SEP design. Given a positive output from

address comparator, the memory request falls into ECC region and its ECC redundancy is

placed following the data. With SECDED protection, 8-byte ECC is generated for each 64-

www.manaraa.com

48

byte cacheline block. Therefore, there is one ECC block following every eight data blocks in a

DRAM row. The in-block ECC layout is similar to that of E3CC presented in Chapter 3.

4.4.2 Exploring Generic Address Mapping Schemes

As presented in Section 4.3, the DRAM device-level address mapping issue emerges when

the space is split into two regions. We thus devise novel and efficient mapping schemes to resolve

this challenge. First, we discuss CRM (Chinese Remainder Mapping) scheme as multiple of

our proposed schemes are based on it. Then we illustrate the devised mappings case by case

to cover all possible combinations of number of rows and columns.

CRM was proposed relying on CRT (Chinese Remainder Theorem) [25] for prime memory

systems. It maps a physical address d ∈ [0, RC − 1] to a position in the 2D array LR×C one to

one using the following formula3:

r = d mod R, c = d mod C

, in which r and c are row and column indexes of the array and r ∈ [0, R − 1], c ∈ [0, C − 1].

CRM guarantees that the translation from d to a 〈r, c〉 pair is a one-to-one mapping given the

prerequisite that R and C are coprime.

Table 4.3 shows an example layout of a block address d with this mapping, assuming

R = 7, C = 8. Using the CRM formula, address d ∈ [0, 55] is translated to a position in the 2D

array correspondingly. For example, d = 50 maps to 〈1, 2〉 (starting from 0). In the mapping,

every address is translated to exactly one designated position and each position of the 2D array

is addressed by exactly one d.

In SEP with a simple memory system of commodity devices, the address mapping is more

complicated for two reasons. First, the number of rows and columns may not be coprime as

required in CRM. Second, as discussed in Section 4.3.1, either access-parallelism or access-

locality is usually required to maintain for practical system. For all the following discussions,

define g = gcd(R,C), in which g is the GCD (Greatest Common Divisor) of R and C. Our

3The notations are different from that in paper [25].

www.manaraa.com

49

row/col 0 1 2 3 4 5 6 7

0 0 49 42 35 28 21 14 7

1 8 1 50 43 36 29 22 15

2 16 9 2 51 44 37 30 23

3 24 17 10 3 52 45 38 31

4 32 25 18 11 4 53 46 39

5 40 33 26 19 12 5 54 47

6 48 41 34 27 20 13 6 55

Table 4.3: An example layout of Chinese Remainder Mapping assuming R = 7, C = 8.

discussions focus on the case that g is 2n, which is true in most cases in real DDRx system as

shown in Section 4.4.3. Let |g| = log2(g). We thus have the following two cases based on g.

Case I: g = gcd(R,C) > 1 and gcd(R,C/g) = 1. In this case, R and C are not coprime

but R and C/g are coprime. We thus propose C-SCM (CRM based Super-Column Mapping)

using the following formula:

r = ds mod R

c = (ds mod t)� |g|+ (d mod g)

(4.1)

where ds = d � |g|, which is called super-address, t = C � |g|, which is called super-column,

and ds ∈ [0, Rt − 1]. By grouping multiple columns together, the number of rows and super-

columns are coprime and thus the CRM scheme can be applied. This mapping is rational as

it simply extends CRM to an array with the same number of rows and a reduced number

of super-columns. The left-shift operation in expression of c expands the super-columns to

normal columns by a scaling-factor g and (d mod g) calculates the offset of the mapping inside

a super-column.

Table 4.4 presents an example layout with the proposed C-SCM scheme assuming R =

8, C = 6. In the example, g = 2 and |g| = 1. Thus two columns are grouped as a super-column.

The addresses with same super-address are mapped to the same super-column. For example,

super-address ds of addresses d = 2, 3 is 1 and it is mapped to row 1, super-column 1. By

scaling the super-column, addresses d = 2, 3 map to normal columns 2 and 3, respectively.

The example above maps addresses within range of g to the same row, which diverges

www.manaraa.com

50

row/col 0 1 2 3 4 5

0 0 1 32 33 16 17

1 18 19 2 3 34 35

2 36 37 20 21 4 5

3 6 7 38 39 22 23

4 24 25 8 9 40 41

5 42 43 26 27 10 11

6 12 13 44 45 28 29

7 30 31 14 15 46 47

Table 4.4: An example layout of C-SCM with R = 8, C = 6.

slightly from access-parallelism. To maintain access-parallelism, one can apply XOR mapping

scheme [119] first before this mapping. For this layout, we propose breaking-factor to break the

small locality within range of g so that memory requests are evenly distributed into memory

units. The selection of breaking-factor is to map the logically continuous addresses to different

rows so that they are physically scattered. There can be multiple options of breaking-factor. In

this example, we use “+c” as the factor and r is thus updated to r = (ds+c) mod R. Table 4.5a

shows the updated layout. As it shows, the small locality of size g is completely broken. For

example, addresses 2 and 3 now map to rows 3 and 4, respectively. All the continuous addresses

are now in different rows.

In case that access-locality is required in practice, the proposed C-SCM cannot be applied

directly as it shortens row buffer locality to a smaller size g. Similar to breaking-factor, we

propose to add an adjusting-factor to draw back the offset of the mapping. We observe that

a continuous set of ds’s are mapped to physically continuous rows. Therefore, by adding an

offset “−(ds mod t)” in calculating row index, the biased row indexes are adjusted. r is thus

updated to r = (ds − (ds mod t)) mod R. Similar method is proposed in Chapter 3. However,

we explicitly write it with super-column assumption and BCRM (Biased Chinese Remainder

Mapping) is just a particular case of this study. Table 4.5b shows the updated layout. All

the continuous addresses within a row boundary are now mapped to the same row and the

maximum row buffer locality is maintained.

The rationality of the two adjustment factors introduced in C-SCM is similar to that of the

www.manaraa.com

51

row/col 0 1 2 3 4 5

0 0 31 44 27 40 23

1 18 1 14 45 10 41

2 36 19 32 15 28 11

3 6 37 2 33 46 29

4 24 7 20 3 16 47

5 42 25 38 21 34 17

6 12 43 8 39 4 35

7 30 13 26 9 22 5

(a) An example layout of C-SCM with breaking-
factor c.

row/col 0 1 2 3 4 5

0 0 1 2 3 4 5

1 18 19 20 21 22 23

2 36 37 38 39 40 41

3 6 7 8 9 10 11

4 24 25 26 27 28 29

5 42 43 44 45 46 47

6 12 13 14 15 16 17

7 30 31 32 33 34 35

(b) An example layout of C-SCM with adjusting-
factor −(ds mod t).

row/col 0 1 2 3 4 5

0 0 31 14 45 28 11

1 18 1 32 15 46 29

2 36 19 2 33 16 47

3 6 37 20 3 34 17

4 24 7 38 21 4 35

5 42 25 8 39 22 5

6 12 43 26 9 40 23

7 30 13 44 27 10 41

(c) An example layout of C-SCM with both
adjusting-factor −(ds mod t) and breaking-factor
+c.

Table 4.5: Example layouts of C-SCM with breaking-factor and adjusting-factor, assuming

R = 8, C = 6.

bias-factor in Chapter 3. In addition, one can apply both breaking-factor following adjusting-

factor to the mapping scheme. It presents a different layout as shown in Table 4.5c by expression

r = (ds−(ds mod t)+c) mod R. In practice, one can explore more variations to meet particular

requirements.

Similar to C-SCM, one can have C-SRM (CRM based Super-Row Mapping) as long as the

number of super-rows is a coprime with the number of columns. The detail of C-SRM is not

presented and it can be applied straightforwardly following C-SCM. Table 4.6 shows an example

layout with C-SRM assuming R = 6, C = 8. Addresses with same super-address now map to

the same super-row. For example, addresses 32 and 33 are mapped to super-row 1 as their

super-address are both 16. This mapping scheme can be one solution for the problem presented

www.manaraa.com

52

row/col 0 1 2 3 4 5 6 7

0 0 18 36 6 24 42 12 30

1 1 19 37 7 25 43 13 31

2 32 2 20 38 8 26 44 14

3 33 3 21 39 9 27 45 15

4 16 34 4 22 40 10 28 46

5 17 35 5 23 41 11 29 47

Table 4.6: An example layout of C-SRM with R = 6, C = 8.

in Section 4.3.

Case II: (g = gcd(R,C) > 1) and (gcd(R,C/g) > 1). In this case, the number of rows

and the number of super-columns are non-coprime. The proposed C-SCM can not be applied.

If gcd(R/g,C) = 1, C-SRM is feasible for this case. However, as shown in Table 4.6, it is

challenging to maintain the row buffer locality. In addition, it does not work if gcd(R/g,C) > 1.

We therefore propose a new scheme called C-SGM (CRM based Super-Group Mapping) which

works even if gcd(R/g,C) > 1. The mapping is done with the following formula, in which

s = R� |g|, t = C � |g|; and ds = d� (|g| � 1), ds ∈ [0, s · t− 1].

r = (ds mod s)� |g|+ ((d� |g|) mod g)

c = (ds mod t)� |g|+ (d mod g)

(4.2)

The rationality of this scheme is that it groups multiple rows and columns separately into

super-row and super-column, denoted as s and t, respectively. As s and t are coprime, the

mapping from ds to Ls×t can apply CRM. The second step in Formula 4.2 is to expand the

super-row and super-column to normal rows and columns by the scaling-factor g and map

addresses to the inner-group array Lg×g. This is obtained by recursively applying the proposed

C-SCM by grouping multiple columns as a super-column. In other words, it maps address

d ∈ [0, g · g− 1] to Lg×g by C-SCM. With the two steps decomposition, address d is mapped to

the 2D array one to one.

Table 4.7 shows an example layout of block addresses with the proposed C-SGM assuming

R = 6, C = 8. In the mapping, g = 2 and |g| = 1. Thus, two rows are grouped as a

super-row and two columns are grouped as a super-column. The addresses d’s with same ds are

www.manaraa.com

53

row/col 0 1 2 3 4 5 6 7

0 0 1 36 37 24 25 12 13

1 2 3 38 39 26 27 14 15

2 16 17 4 5 40 41 28 29

3 18 19 6 7 42 43 30 31

4 32 33 20 21 8 9 44 45

5 34 35 22 23 10 11 46 47

Table 4.7: An example layout of C-SGM scheme with R = 6, C = 8.

mapped to same super-row and super-column index. For example, super-address ds of addresses

d = 4, 5, 6, 7 is 1, therefore all these addresses map to super-row 1 super-column 1. In the second

step of proposed C-SGM scheme, we apply C-SCM to map to the inner super-group mapping

and C-SRM can also be used for particular requirement.

The proposed C-SGM scheme can map address d ∈ [0, 47] to designated region of L6×8.

However, it does not maintain the property of access-parallelism or access-locality. One can

explore XOR mapping [119] or adjustment factors with C-SGM. In this study, though, we

explore a new scheme called S-SRM (Section based Shift-Row Mapping), which is not based on

CRM. We divide the address space into sections based on the GCD g, in which g = gcd(R,C).

S-SRM can be written in the following formula:

c = d mod C

r = (d+ i) mod R

(4.3)

In above formula, i = b(d · g)/(R · C)c and i ∈ [0, g − 1]. Table 4.8a shows an example

layout of S-SRM. It is a one to one mapping that continuous addresses are mapped to different

rows. Therefore, access-parallelism is maintained and this scheme can be a solution to the

problem presented in Section 4.3. In case that access-locality is required, adjusting-factor can

be applied to draw back row buffer locality. With adjusting-factor “−c”, r is updated to

r = (d+ i− c) mod R. The adjusted layout is shown in Table 4.8b.

The rationality of S-SRM relies on the introduced i, which is called shifting-factor. It plays

two major roles. First, it partitions the address space d into g sections, denoted as section i

each. In above example, g = 2 and d is thus partitioned into two sections with d0 ∈ [0, 23] and

d1 ∈ [24, 47], the subscript of d denotes i. Second, the shifting-factor i shifts the mapping of the

www.manaraa.com

54

row/col 0 1 2 3 4 5 6 7

0 0 41 18 35 12 29 6 47

1 24 1 42 19 36 13 30 7

2 8 25 2 43 20 37 14 31

3 32 9 26 3 44 21 38 15

4 16 33 10 27 4 45 22 39

5 40 17 34 11 28 5 46 23

(a) An example layout of S-SRM without adjusting-factor.

row/col 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 24 25 26 27 28 29 30 31

2 8 9 10 11 12 13 14 15

3 32 33 34 35 36 37 38 39

4 16 17 18 19 20 21 22 23

5 40 41 42 43 44 45 46 47

(b) An example layout of S-SRM with adjusting-factor “−c”.

Table 4.8: Example layouts comparison using S-SRM with and without adjusting-factor as-

suming R = 6, C = 8.

entire section by an offset of i, which otherwise is mapped to the same positions with section

of i = 0. For example, these two example sections will map to exactly the same row and same

column in the 2D array without shifting-factor. Table 4.9 shows such layouts. The unmapped

positions are marked as “x”. It is obvious that address sets d + i · RC/g are mapped to the

same positions for different integer i ∈ [0, g − 1]. For example, addresses d = 0, 24 are mapped

to 〈0, 0〉; d = 13, 37 are mapped to 〈1, 5〉. We thus come to S-SRM scheme to shift the row

indexes of different address sets by its shifting-factor. With this adjustment, the translation

maintains a one-to-one mapping.

We prove here that S-SRM is a one-to-one mapping. Given R = mg,C = ng, gcd(m,n) =

1, d ∈ [0,mng − 1], formula

x = d mod R, y = d mod C

maps d to a pair of integers 〈x, y〉 one to one. To prove the statement, Let dp = pR + x0 and

p is the integer quotient, therefore, dp mod R ≡ x0. Since d ∈ [0,mng − 1], p ≤ n − 1. Let

yp = dp mod C. Now, we merely need to prove that for all p, dp maps to different yp. Assume

www.manaraa.com

55

row/col 0 1 2 3 4 5 6 7

0 0 x 18 x 12 x 6 x

1 x 1 x 19 x 13 x 7

2 8 x 2 x 20 x 14 x

3 x 9 x 3 x 21 x 15

4 16 x 10 x 4 x 22 x

5 x 17 x 11 x 5 x 23

(a) An example layout of S-SRM with d0 ∈ [0, 23], i = 0.

row/col 0 1 2 3 4 5 6 7

0 24 x 42 x 36 x 30 x

1 x 25 x 43 x 37 x 31

2 32 x 26 x 44 x 38 x

3 x 33 x 27 x 45 x 39

4 40 x 34 x 28 x 46 x

5 x 41 x 35 x 29 x 47

(b) An example layout of S-SRM with d1 ∈ [24, 47], i = 1.

Table 4.9: Example layouts with S-SRM without applying shifting-factor i for the two sections

of address d ∈ [0, 47] assuming R = 6, C = 8.

there is a p′ different from p such that yp′ = yp. Then

yp = pmg + x0 − qng

yp′ = p′mg + x0 − q′ng

Since yp′ = yp, we have

(p− p′)m = (q − q′)n

Note that p, p′, q, q′ are all integers and p, p′ ∈ [0, n− 1]; q, q′ ∈ [0,m− 1], m and n are coprime.

The only condition that the above formula is right is p = p′ and q = q′. Therefore, the

assumption is invalid. We thus have the statement proved.

The proposed S-SRM can have multiple variations. One can shift column to adjust the

layout instead of shifting row to have S-SCM (Section based Shift-Column Mapping). In addi-

tion, one can combine S-SRM with C-SCM to group multiple columns as a super-column and

then apply S-SRM. Formula 4.4 shows an example equation combining C-SCM and S-SRM

together. In the formula, ds = d� |g|, t = C � |g| which are super-address and super-column,

www.manaraa.com

56

row/col 0 1 2 3 4 5 6 7

0 0 1 34 35 12 13 46 47

1 24 25 2 3 36 37 14 15

2 16 17 26 27 4 5 38 39

3 40 41 18 19 28 29 6 7

4 8 9 42 43 20 21 30 31

5 32 33 10 11 44 45 22 23

Table 4.10: An example layout with combination of S-SRM and C-SCM, assuming R = 6, C =

8.

respectively. Table 4.10 shows an example layout using this formula.

c = (ds mod t)� |g|+ (d mod g)

r = (ds + i) mod R

(4.4)

The proposed S-SRM can be adjusted to maintain row buffer locality. However, S-SRM

requires complex multiplication and division operations to calculate the shifting-factor i. This

can be resolved in real machine by adding a small RAM or ROM to maintain the address range

for each i given that g is generally a small value. In above example, g = 2, value B = 24 can

be maintained such that i = 0 for d < B and i = 1 for d ≥ B.

4.4.3 Case Study of Real DDR3 System With SEP

In previous section, we discuss all the address mapping schemes for different cases mathe-

matically. In this section, we show case studies of applying the proposed mapping schemes in

real DDRx memory system for selective protection.

Without losing generality, we assume an example memory system in our following discus-

sions. The memory system has two DRAM channels with two DIMMs per channel and two

ranks per DIMM. Each rank contains eight x8 DRAM devices, assuming Micron DDR3-1600

MT41J256M8 device [69] in this example. It is a 2Gbit chip with eight internal banks and each

bank has 32K rows, 1K columns, and 8 bits per column. Assume SEP divides the space into

two regions with ratio 3 : 1 and let the upper region, denoted as x, have 215 × 3
4 rows and the

lower region, denoted as y, have 215× 1
4 rows. In a case that region x is not protected by ECC

www.manaraa.com

57

Physical address

Lower-bitsUpper-bits

bank rank DIMM channel offset

column row

Step 1

Step 2a Step 2b

Figure 4.3: Address decomposition procedure.

and it requires access-parallelism, conventional cacheline-interleaving scheme cannot be applied

to resolve its address mapping. In this case4,

Rx = 213 × 3, Cx = 27, gcd(Rx, Cx) = Cx

Therefore, Formula 4.1 can be used. By grouping all the columns as a super-column, CRM

based mapping scheme is applicable. Figure 4.3 shows the detailed address decomposition

procedure. In step 1, the physical address can be decomposed directly into lower 12 bits and

the remaining upper-bits. The lower-bits include bank, rank, DIMM, channel and block-offset.

In step 2b, these lower-bits are split into corresponding indexes as all of them are power-of-two.

Step 2a is completed by Formula 4.1 that r = (d � 7) mod Rx, c = d mod Cx. To maintain

access-parallelism, a breaking-factor “+c” can be added in expression r, which is explained

previously. The above formula requires modulo 213 × 3 and modulo 2n operations. Modulo 2n

is simply the last n bits of address d and we prove in Section 4.4.4 that modulo 213 ×m can

be converted to modulo m operation, which can be done efficiently.

In above case, if region x requires ECC protection, its number of columns is shrunk to

a non-power-of-two value. As each 64-byte data block requires 8 bytes ECC with SECDED

scheme, the effective number of columns is thus Cx = 210/9 = 113. A modulo operation of 113

can introduce certain complexity in hardware implementation in practice. We thus use merely

112 columns as a trade-off between complexity and capacity. Therefore,

Rx = 213 × 3, Cx = 24 × 7, gcd(Rx, Cx) = 24

4In a 64-bit rank, eight columns are accessed continuously to burst a 64-byte block. Cx is thus 27 by removing
3 bits block offsets for a typical 64-byte block.

www.manaraa.com

58

Similarly, the proposed C-SCM scheme can be applied and proper adjusting-factor can be

added if needed. In this example, S-SRM can also be applied for address mapping. Given

gcd(Rx, Cx) = 24, 15 reference addresses are required to divide the physical address space into

16 sections. By applying Formula 4.3, the mapping is done by modulo Rx and Cx.

The SEP design can introduce various combinations of R and C as the partitioning can be

flexible and diverse forms of ECCs can be employed other than SECDED code. The proposed

mapping schemes can be applied correspondingly. However, the flexibility may be limited

slightly in practice considering the complexity of hardware implementation. One may also

make trade-off between valid DRAM capacity and hardware simplicity.

4.4.4 Hardware Implementation of Modulo Operation

In real DDRx memory system with the proposed address mapping, the following modulo

operation is generally required:

v mod (m× 2n)

where m is a small value. We prove that the above modulo (m × 2n) operation can deduce

to modulo (m) operation, which can be resolved efficiently. The deduction is obtained by the

following formula:

v mod (m× 2n) = ((v � n) mod m)� n+ (v & (2n − 1))

where & is a bit-wise AND operation. The core part of the proof is to regard the data in binary

representation. Assume v = h� n+ l, where l is the lower n bits of v and h is the higher bits.

We thus have l < 2n. Let h = mk + r, where r = h mod m. Given the two basic properties of

modulo operation [101]

(a+ b) mod m = ((a mod m) + (b mod m)) mod m

(a · b) mod m = ((a mod m) · (b mod m)) mod m

www.manaraa.com

59

The proof is done by following steps:

v mod (m× 2n)

= ((h · 2n) mod (m · 2n) + l mod (m · 2n)) mod (m · 2n)

= (((mk + r) · 2n) mod (m · 2n) + l) mod (m · 2n)

= (r · 2n + l) mod (m · 2n)

= r · 2n + l

Based on the basic properties of modulo operation, a modulo small number operation can

be done as follows:

v mod m =

n−1∑
i=0

(vi · (2i mod m)) mod m

where vi is the corresponding ith bit of v in binary representation. When m is set, the for-

mula can be further simplified as (2i mod m) has finite outcomes. For example, Teng [101]

shows that a simple logic can be implemented to resolve modulo 7 operation as 2i mod 7 =

1, 2, 4, 1, 2, 4 · · · , (i = 0, 1, 2, 3, 4, 5 · · ·). Therefore, a modulo m operation is deduced to addi-

tion operation. The corresponding ith bit of v is used as a filter to decide whether one of the

three outcomes is added to obtain the result. Similar to modulo 7 operation, one can have

repeated outcomes for other small numbers for 2i. Therefore, the modulo operation can be

done efficiently. In practice, one can add a small SRAM in memory controller for maintaining

these remainders for a preset value m. The SRAM can be reconfigured based on the specified

reference address in partitioning register.

4.4.5 Other Discussions

The proposed address mapping schemes can be extended for memory systems with more

regions for various error protections. For example, a system can have three regions with one un-

protected, one with SECDED protection and the remaining one with BCH DECTED (Double-

bit Error Correcting Triple-bit Error Detecting), respectively. Such a partitioning further tunes

the system in fine granularity for strong reliability while maintaining efficient energy consump-

tion.

www.manaraa.com

60

4.5 Discussion of Application Scenarios

The proposed address mapping schemes make SEP a viable design in real DDRx systems.

All these schemes can be applied but not limited to the following scenarios.

4.5.1 OS and Compiler Aided Selective Protection

There can be multiple ways to apply SEP in real machines. First, Mehrara et al. [68] pro-

pose a profile-based criticality analysis to determine the vulnerability of data, text, variables,

etc. of a program. The liveness based profile study prioritizes code and data that are fre-

quently accessed and places them in error-protected memory region. Second, Chen et al. [12]

use a program slicing [106] based approach to optimize compiler to place the set of elements

requiring protection in error tolerant region of SEP. Furthermore, Oz et al. [77, 76] propose

TVF (Thread Vulnerability Factor) to quantify vulnerability of multithreaded applications and

further propose core partitioning based on TVF considering both performance and reliability.

It hints a core partitioning based policy with SEP hardware design. In addition, one can even

apply user-specified data criticality to tell OS and compiler which part of data requires protec-

tion and SEP facilitates this purpose. All these strategies require OS and compiler for placing

the sensitive data. The details are beyond our study.

4.5.2 Selective Protection to Lower Refresh Frequency

There have been multiple studies [62, 61, 107, 19, 48] focusing on reducing refresh frequency

of DRAM memories to improve power efficiency and performance. Refresh command is essential

to DRAM technologies to recharge memory cells in certain period to maintain data integrity.

Otherwise, data loses as charges on a cell leak away. As DRAM capacity and density are

growing, more refresh operations are required for each DRAM bank and they can introduce

significant overhead in terms of performance and power consumption. Studies [107, 19, 48] have

proposed to add ECC to tolerate errors in DRAM cache or main memory caused by reduced

refresh rate. In detail, study [19] observes leakage errors are unidirection from 1s to 0s and

therefore Berger Code can be applied to detect arbitrary number of errors (no correction is

www.manaraa.com

61

possible). It further shows that DRAM refresh rate can be reduced to 4x time by applying

single-bit error correction. With all these schemes, our proposed address mapping can be

applied to organize and address ECC codeword. The implementation, though, requires careful

design as SEP itself introduces overhead and error tolerant capability is limited.

4.5.3 Selective Protection to High Error Rate Region

Recent studies [92, 33] measure error rate and study error properties on DRAM systems

on large scale real machines. They both observe that errors are not distributed uniformly on

memory system. Particularly, study [33] observes that the top and bottom of the row/column

space in a bank is more likely to experience errors. In addition, errors tend to cluster on

same row, same column and their nearby rows and columns. That means the error rate of the

rows and columns is high once they have experienced errors. All these observations hint for

SEP scheme that selective error protection can be applied to these regions to tolerate errors

while limit area and power cost by reliability design. As the regions with high error rate can

physically distributed in a bank, it is challenging to apply SEP with the proposed address

mapping straightforwardly. One can propose to add a simple logic to reorganize the physically

scattered rows to be logically continuous. Therefore, the memory space can be divided into two

continuous regions logically and our proposed address mapping schemes can be simply applied.

4.5.4 Balancing DRAM Access Locality and Parallelism

In conventional DDRx memory system, either cacheline-interleaving or page-interleaving

scheme is deployed and the system either maintains access-parallelism or access-locality. Due

to diversities of applications and workloads, such a system can be inefficient since merely one

property is maintained. Study [44] proposes to partition internal memory banks between cores

to maintain DRAM accesses locality since requests interferences from other cores are isolated.

In addition, they propose to compensate the reduced bank parallelism with sub-ranking scheme.

Similar to their study, one can have different partitions for both locality and parallelism in one

system. For example, a low-level in-bank partitioning can be applied, in which requests with

high locality are placed in same DRAM rows targeting high row buffer hit ratio while requests

www.manaraa.com

62

with low locality are distributed into multiple banks for high parallelism. Such a design requires

memory requests characterization of different workloads. As in-bank partitioning can form a

non-power-of-two region, our proposed scheme can be applied to resolve the address mapping

challenge.

4.6 Summary

In this chapter, we discuss in detail the DRAM device-level address mapping challenges

when selective error protection scheme is applied. To resolve the challenges, the CRM based

and Section based address mapping schemes are proposed. The proposed mapping schemes are

flexible and can be selectively applied to either maintain high memory locality or high accessing

parallelism by tuning the proposed adjustment factors. All these schemes are based on modulo

operation, which is proved to be efficient. The proposed schemes can be applied to diverse

scenarios balancing power and area overhead with reliability requirement. They are efficient,

flexible and feasible in practice.

www.manaraa.com

63

CHAPTER 5. FREE ECC: EFFICIENT ECC DESIGN FOR

COMPRESSED LLC

Cache compression schemes have been proposed to increase the effective cache capacity of

last-level cache, for which we found the conventional cache ECC design is inefficient. In this

chapter, we propose Free ECC that utilizes the unused fragments in compressed cache design to

store ECC. It not only reduces the chip overhead but also improves cache utilization and power

efficiency. Additionally, we propose an efficient convergent cache allocation scheme to organize

the compressed data blocks more effectively than existing schemes. Our evaluation using SPEC

CPU2006 and PARSEC benchmarks shows that the Free ECC design improves cache capacity

utilization and power efficiency significantly, with negligible overhead on overall performance.

This new design makes compressed cache an increasingly viable choice for processors with

requirements of high reliability.

5.1 Introduction

Recently, efficient compression techniques have been proposed [17, 109, 3, 80] for on-chip

caches to increase the effective capacity without physically enlarging the storage. Typically,

compressed cache doubles the number of tag fields and merely targets a 2x cache capacity. This

parameter is selected mainly due to the limitation of average compression ratio viable, while

avoiding unnecessary tag arrays on chip. Therefore, all of our following discussions use this 2x

compressed cache as the baseline. Compression techniques save the real estate of data array

when being compared with conventional method, which increases cache capacity by brute force.

Thus, the number of on-chip transistors is effectively reduced and so is the leakage power.

However, the conventional cache ECC design is inefficient when used in compressed caches.

www.manaraa.com

64

We formulate this efficiency as cache capacity utilization using the following formula:

e =
Combined Size of Effective Data Blocks

Physical Cache Capacity

Without error protection, this factor is 2 in maximum for a compressed cache that targets

2x compression [109, 80]. The maximum utilization reduces to 1.78 if conventional ECC design

is used. We have observed that, in recently proposed compressed cache schemes, a compressed

cache has a significant amount of unused fragments in the cache data blocks as the result

of compression. If done properly, those fragments can be utilized to store ECC. It not only

reduces chip cost but also improves cache capacity utilization and power efficiency. It will not

be straightforward, though, because the unused fragments are of variable sizes and they may

not always be available for a given cache block.

In this chapter, we propose a design called Free ECC to embed ECC into the unused

fragments in compressed caches to avoid dedicated ECC storage. The design is tightly coupled

with the cache compression scheme. For a given cache block, there are three cases of embedding

its ECC, which is distinguished by a compression encoding field of the block (the field exists in

compressed cache and uniquely identifies a compression pattern). First, the ECC can be stored

directly in the unused fragment if the fragment is large enough to hold the ECC, which is a

common case. Second, if the fragment is not large enough, a lightweight EDC (Error Detecting

Code) is embedded into the block, and the ECC is stored in a reserved block of the same cache

set of the cache block. For a cache read, the ECC is accessed only if an error is detected by

EDC checking, which is a rare case. In other words, almost all cache reads only incur accessing

a single cache block, even if the ECC is stored in another block. The remaining space of the

reserved block will be still used for data storage. We have revised the compressed cache scheme

such that, for any compression pattern, if a cache block is compressed, the unused fragment is

always large enough to embed the EDC. Finally, for a cache block that cannot be compressed,

its EDC is maintained in the compression encoding field, which is not used when the block

stores uncompressed data.

We have carefully examined the technical issues and challenges in Free ECC design and

have resolved those issues with minimal impact on system performance. We also propose a

www.manaraa.com

65

d0 d1 d2 d3 d4 d5 d6 d7

Original 64 bytes data

Shortened storage length is 24 bytes

Δ0 Δ1 Δ2 Δ3 Δ4 Δ5 Δ6 Δ7

All are two-byte sign-extension wordΔs

d0 Δ0 Δ1 Δ2 Δ3 Δ4 Δ5 Δ6 Δ7

Figure 5.1: An example of B∆I (B8∆2) compression algorithm, in which base size is eight bytes

and each ∆ is two bytes.

convergent cache allocation scheme to efficiently organize compressed data blocks in a set. It

provides improved compression ratio or reduced complexity when compared with two existing

cache compression schemes.

The rest of this chapter is organized as follows: Section 5.2 introduces the background

of cache compression schemes and related work. Free ECC Cache design is presented in Sec-

tion 5.3. Section 5.4 and Section 5.5 present simulation environment and analyze the simulation

results, respectively. Section 5.6 concludes this chapter.

5.2 Background and Related Work

5.2.1 Cache Compression Schemes

Compression algorithms have been widely studied [80, 109, 3, 122, 123, 18] for decades.

However, only those with simple and fast hardware implementations can be used in cache com-

pression. Among existing compression algorithms, ZCA (Zero-Content Augmented Cache) [17],

FVC (Frequent Value Compression) [109], FPC (Frequent Pattern Compression) [3] and re-

cently proposed B∆I (Base-Delta-Immediate compression) [80] are potential selections for cache

compression due to the hardware simplicity. ZCA [17] focuses on reducing the storage of zero

value in cache as it is frequent. FVC [109] based compression observes that a certain number

of values are frequent and could be represented by smaller length of encoding bits. FPC [3] is

proposed to compress data with certain patterns like zero runs, sign-extension, half-word and

www.manaraa.com

66

others. It is built on the observation that some data patterns are frequent and representable

by fewer bits.

In Free ECC design, we opt for B∆I as the baseline compression algorithm due to its

competitive compression ratio and low decompression latency. However, all the discussions

can be extended to most of the other algorithms. B∆I [80] explores the similarity of nearby

data segments in a data block. It represents data with a base (B) and a set of differences

(∆s) between data segments and the selected base. Figure 5.1 presents an example of the

compression scheme. In the example, the 64-byte data is represented in eight 8-byte seg-

ments {d0, d1, d2, d3, d4, d5, d6, d7}. d0 is selected as the base and differences are calculated as

∆i = di − d0 for i = 0, 1, · · · , 7. As all the ∆is (i = 0, 1, · · · , 7) are two-byte sign extension

words, the ∆s can be represented in two bytes and the 64-byte data is thus compressed to

{d0,∆0,∆1, · · · ,∆7}.

As B and ∆ sizes vary, the compressed data is thus represented as Bx∆y[I], meaning the

base size is x-byte and each ∆ is y-byte. An optional I determines whether zero is selected as

the second base, in which case a data mask is required to indicate whether ∆ is based on the

non-zero or zero base. The compressed data size thus can be calculated by x + y · (64/x)+ I

·(64/x)/8, I is 1 if zero is opted as a second base, 0 otherwise. In addition, a four-bit encoding

is required to decompress the 15 compression patterns, including uncompressed data, as a

combination of x, y and I.

5.2.2 Fragments In Compressed Cache

The cache organization maintains a tag field for each data block as an identifier. Therefore,

the number of tags determines the maximum data blocks that can be placed in the data entries.

As the compression ratio for each application varies, it is highly possible that small storage

fragments are left idle in compressed cache. Take B∆I compression algorithm as an example,

if the two compressed data lengths are 16 and 36 in one data block, a 12-byte fragment is left

unused.

www.manaraa.com

67

5.2.3 Related Work

Prior works [50, 118, 51, 112, 111] have studied cache error protection for uncompressed

caches. Kim and Somani [50] propose to only protect the most frequently accessed data as they

would propagate errors to other components more easily. The proposed parity caching, shadow

checking and selective checking significantly reduce the cost required for the reliability concern.

However, errors in the less frequently used data would potentially tamper other components.

ICR (In-cache replication) [118] proposes a non-uniform reliability scheme to use the existing

cache space to hold replicas of data that would be used in near future. It reduces the area

cost significantly. However, the system potentially suffers high error rate since not all cache

lines are protected. Kim [51] proposes another area efficient scheme that applies ECC to dirty

blocks and EDC to clean blocks and it periodically evicts dirty blocks to DRAM to reduce the

amount of ECC required in cache. However, this scheme increases the traffic to main memory.

The most recent studies propose to decouple error detection and error correction to mini-

mize the overhead in tolerating errors [112, 111]. They propose to keep the light-weight EDC

in on-chip cache while offloading the high-cost ECC code to remote off-chip DRAMs given the

observation that error correction is a rare event. Such a separation of EDC and ECC signifi-

cantly reduces the cost of the dedicated storage for redundancy but does not eliminate it, and

it introduces the overhead for updating and retrieving ECC from/to DRAMs. In the case that

a dirty cache line is updated and its ECC is not cached, a DRAM accessing is required to

update the corresponding ECC. A continuous writing to the same dirty line would worsen the

situation. Although they further propose ECC FIFO [111] to reduce overhead for accessing

main memory for ECC, the scheme will still potentially increase main memory traffic and its

power consumption. There are also many other studies [58, 117, 116] proposed to reduce the

overhead of reliable cache designs. However, they are not targeting the specific compressed

cache schemes and do not explore the fragments in compressed caches.

www.manaraa.com

68

…set0
set1

setN

tag0
data0

way1way0 64 bytestag3
data1 data2 data3

way2 way364 bytes

(a) A conventional uncompressed 4-way set associative cache organization

set0
set1

setN
C

tag0 tag1 tag7

Compress encoding code

way0 way1

data0 data1 data2 data3

(b) A B∆I compressed cache organization with double tag fields to maintain 2x data in data storage

Figure 5.2: Comparison of uncompressed cache and compressed cache organizations.

5.3 Design of Free ECC

In this section, we first present the compressed cache organization and the proposed conver-

gent allocation scheme. Based on this layout, we discuss in detail the challenges and strategies

adopted in Free ECC cache implementation.

5.3.1 Convergent Allocation Scheme

Figure 5.2 compares the compressed cache organization with its uncompressed form. Fig-

ure 5.2a presents the uncompressed four-way set associative cache. Compared with the uncom-

pressed form, Figure 5.2b doubles the number of tag fields to allow two data blocks to reside

in one cache block. Applying B∆I compression algorithm, a 4-bit encoding C is attached to

each tag to help decode and address the two data blocks in one cache line as illustrated in Sec-

tion 5.2. Compared with Figure 5.2a, Figure 5.2b virtually doubles the cache capacity without

physically enlarging the data storage.

In compressed caches, the layout of data blocks affects compression ratio and thus the

performance. Figure 5.3 compares the uncompressed and three compressed cache allocation

schemes. Figure 5.3a presents the eight data blocks in one set for an eight-way set associative

cache. Figure 5.3b presents an example of consecutive allocation layout, which allocates space

for compressed data blocks continuously in order to efficiently use the storage. However, this

scheme is impractical due to multiple issues. First, the compressed data can cross two cache

www.manaraa.com

69

C0

C1

C2

C3

C4

C5

C6

C7

(a) uncompressed
cache

C0

C1 C2

C4 C5 C6

C7 C8

C9 C11

C12 C13

C15

C10

C3

C14

(b) consecutive alloca-
tion

C0

C1 C2

C4

C5 C6

C7 C8

C9

C11

C12 C13

C10

C3

(c) fixed-space
allocation

C0

C1 C2

C4

C5 C6

C7 C8

C9

C11 C12

C13 C14

C10

C3

(d) convergent
allocation

Figure 5.3: Comparison of cache allocation schemes for an example eight-way set associative

cache. The dark gray fields are fragments left unused.

blocks, i.e. data C6, C9 and C14. This non-alignment complicates cache read access. Second,

as the length of compressed data varies, the address of a data block in one set changes dynam-

ically, which complicates the addressing. The calculation of starting position of a data block

requires the information of compressed lengths of all the prior data blocks. Most importantly,

it introduces data movement issue caused by data overflow, also called fat write for the case

that the coming data cannot fit in its prior slot. In such cases, all the following data requires

to move backwards. These excessive overheads hamper its adoption in on-chip caches though

such allocation scheme uses cache capacity efficiently.

Conventionally, fixed-space allocation is applied to organize the data placement. An ex-

ample layout is shown in Figure 5.3c. In such a scheme, every 64-byte block is regarded as

two 32-byte storage. If compressed data can fit into a 32-byte block, it uses half of the entry.

Otherwise, it uses the entire 64-byte cache block. For example, compressed data blocks C3

and C4 are placed in one entry as their sizes are both less than 32 bytes. However, data C9

is greater than 32 bytes and thus occupies the entire cache block. In the case of a fat write,

the data block that shares the same cache block with the coming data is simply evicted. It

thus eliminates the data movement issue and simplifies addressing data blocks. Such a simple

scheme addresses the issues in consecutive allocation with penalty of compression ratio loss.

We propose convergent cache allocation to improve the compression ratio of fixed-space

allocation. Figure 5.3d presents an example data layout. It allows two compressed data to

place in one entry if the total size fits into one block. The two compressed data are placed

www.manaraa.com

70

from the two ends of the entry and leave the fragment in the middle. It has the following

advantages. First, it increases the compression ratio compared with fixed-space allocation. For

example, data C9 and C10 are placed in one entry in Figure 5.3d while they reside in two blocks

in Figure 5.3c. Second, it shares all the advantages of fixed-space allocation, i.e. eliminating

data movement issue and simplifying data blocks addressing. In addition, the placement of

two compressed data leaves one big fragment in the middle instead of two smaller ones in

fixed-space allocation, which helps maintain ECC.

The details of cache access for convergent allocation are similar to that of fixed-space cache

allocation. In fixed-space cache allocation, the start position of the second compressed data is

always fixed to the half point of block size. It ends at multiple varied positions depending on

compressed data lengths. For convergent cache allocation, the start position of second data in a

block varies but it always ends at the last byte of the block. With B∆I compression algorithm,

the start position of the second compressed data is the two’s complement of the corresponding

compressed data length. For example, given a compressed data length of 16, the start position

is 110000bin which is two’s complement of the corresponding compressed data length 010000bin.

5.3.2 Free ECC Design

Based on the proposed convergent allocation scheme, we first examine a straightforward

implementation of embedding ECC into fragments. In the straightforward design, an ECC

code word is maintained for all the data blocks resided in the cache block entry. In the case

that a cache block is short of space for ECC code word, the overflowed ECC is maintained in

any other fragment in that cache set.

Such a design introduces several issues. Taking Figure 5.2b as an example, when a write

request updates data 0 in set 1 in the figure, it incurs an extra read operation to retrieve data

1 for updating ECC. Second, ECC may cause overflow in compressed caches. For example,

if there is no sufficient space to maintain ECC in way 2 set 1 in Figure 5.2b, its ECC needs

to store in another place. This introduces overhead of pointers for locating ECC and requires

extra read operation for retrieving ECC. Moreover, write overflow induced ECC movement

issue. Assume the ECC code word ECC 2 for way 2 is placed in way 0 as way 2 lacks space in

www.manaraa.com

71

Group Methods Encoding lcps lopt Form A (x+ z) Form B (x+ y + z)

small

Zero-run 0000 0 0 0 + 0 0 + 0 + 0

Repeat 0001 8 8 8 + 1 8 + 0 + 1

B8∆1 0010 16 15 15 +2 15 + 0 + 2

B8∆1I 0011 17 16 16 +2 16 + 0 + 2

B4∆1 0100 20 19 19 + 3 19 + 0 + 3

medium

B4∆1I 0101 22 21 21 + 3 21 + 1 + 0

B8∆2 0110 24 22 22 + 3 22 + 1 + 0

B8∆2I 0111 25 23 23 + 3 23 + 1 + 0

large

B2∆1 1000 34 33 33 + 5 33 + 1 + 1

B4∆2 1001 36 34 34 + 5 34 + 1 + 1

B4∆2I 1010 38 36 36 + 5 36 + 1 + 1

B2∆1I 1011 38 37 37 + 5 37 + 1 + 1

B8∆4 1100 40 36 36 + 5 36 + 1 + 1

B8∆4I 1101 41 37 37 + 5 37 + 1 + 1

Uncompressed 1111 64 64 64 + 0 64 + 1 + 0

Table 5.1: Tailored B∆I algorithm with ECC/EDC integrated. lcps and lopt are original and

optimized compressed data lengths, respectively. Columns six and seven show the two possible

store forms of the compressed pattern. x: compressed data length; y: EDC bytes stored with

the data, z: ECC bytes stored with the data.

Figure 5.2b. In the case that data 0 overflows, ECC 2 would move to another space as fragment

in way 0 runs out. This causes extra read and write operations.

Objectives in Designing Free ECC. The design of Free ECC is to resolve those chal-

lenges and make it simple and effective. We thus have the following design objectives:

• Avoiding the extra read operation when updating ECC.

• Avoiding the second read operation to fetch ECC.

• Eliminating the ECC movement issue induced by fat write.

• Minimizing the impact to compression ratio when ECC is integrated.

In order to meet our design goals, we first optimize the B∆I compression algorithm and

then propose three strategies to simplify Free ECC design.

Optimization of B∆I. In B∆I compression algorithm, the first non-zero based ∆ is always

zero because the first non-zero data segment is selected as the base. Therefore, the first ∆ can

www.manaraa.com

72

be removed to shorten the compressed data length. The detailed optimization is described in

Column five (lopt) in Table 5.1. The optimization guarantees that there is at least a four-byte

fragment left unused for any two compressed data blocks maintained in one cache entry. In the

worst case, the two compressed data block lengths are 23 and 37.

Strategy to separate ECC for each data block. In order to resolve the first challenge,

we propose to separate ECC for each data block instead of applying ECC for the entire 64-byte

cache block. Using conventional SECDED (72,64) coding, we may need to pad zeros for a

data block to make it eight-byte aligned. For example, 5-byte zeros are appended following a

19-byte data block for calculating its 3-byte SECDED parity word. Therefore, no extra ECC

generating or checking logic is required for varying lengths of compressed data.

Strategy for ECC placement. In order to avoid introducing high cost of ECC pointers

and resolve ECC movement issue, we propose the following policies. First, at least one data

block’s ECC is always maintained in the same cache block if two compressed data reside in

one cache line. Therefore, only one ECC pointer is required for each cache block at most. In

the particular case that a 64-byte uncompressed data and an all-zero data block are placed

together in one entry, it still solely requires one ECC pointer. In Free ECC design, we thus add

one ECC pointer E for each cache block and an extra bit D to indicate which block’s ECC is

maintained in another cache block. This strategy introduces minimal impact to compression

ratio as we observe that for any two compressed data that can reside in one block, there is at

least four-byte fragment left in B∆I algorithm.

Second, the overflowed ECC is stored in the last cache block in that set instead of any

arbitrary fragment in cache to avoid ECC movement issue and simplify ECC locating. The

reserved ECC space is regarded as 16 four-byte segments, which means E is four bits. In the

worst case that all data are uncompressed, 56 bytes of storage is reserved in the last entry for

ECC for an eight-way set associative cache. We therefore leave the first eight bytes in the last

cache block for data and E = 0000 is an invalid ECC pointer, which means all the ECCs are

maintained in the same block for that cache line.

Strategy for data protection. In the case that there is no sufficient space to maintain

ECC in the same block, an extra cache access is required to fetch its ECC. In order to avoid the

www.manaraa.com

73

set0
set1

setN

tag0

data0

C

E

4 bytes segments

EDC4 ECC1 ECC2 ECC3D

0 0000 0 0 1111 1

E DS S

data1 data4 data2 data3

tag1 tag7 way0 way1

EDC3

1 1101 0

E DS ECC4ECC0
C

Figure 5.4: Free ECC cache organization.

second access, we bind one byte EDC for such data block. The computing of EDC is similar

to that of ECC such that the data is aligned by padding zeros. With the adoption of this

strategy, the second cache access is only required if an error is detected, which is a rare event.

The integrating of EDC introduces negligible impact on compression ratio as we observe that

there is one byte space left in almost all cases if the data is compressible.

For the particular case that data is uncompressible, we place its one-byte EDC into the two

4-bit encoding C fields. The design is reasonable as in this case the encoding bits are unused.

An extra special bit S is thus required to identify this case. If S is set, the two C fields store

the one-byte EDC for an uncompressed data. Tag of the data is selected by checking D bit as

no ECC is needed for the other possible data zero.

Optimization for compression ratio. In the above design, all data blocks in cache

are protected by ECC. Such a scheme can introduce penalty to cache compression ratio. We

thus propose an optimized protection scheme to reduce the cost. In the optimization, clean

data blocks are not protected by ECC based on the observation that their duplications exist in

DRAM system. In case that EDC detects an error, the dependable duplication can be retrieved

from lower level main memory. Therefore, a clean data block merely requires one-byte EDC

code and thus mitigates the costs introduced by Free ECC design. Such an optimization causes

no extra complexity to hardware implementation. Once cache write logic recognizes a clean

block, it simply calculates an EDC byte and writes it together with data. For uncompressed

block, its EDC is still maintained in the two tag fields.

Free ECC Cache Organization. Figure 5.4 presents Free ECC cache organization by

applying all those optimization and strategies. It is similar to conventional compressed cache

illustrated in Figure 5.2b with a slight extension of tag field. A four-bit ECC pointer E and

www.manaraa.com

74

Tag matching

E set ECC checkingN

Y

EDC checking

Decompression

Obtain
compressed
data and
checking code

error

Fetch ECC

D

N

Y

Y

Figure 5.5: Free ECC cache read operation.

Tag matching

Control logic for
updating C, E,D &S

Write data and
ECC/EDC

Update C,E,D&S

Fat write

LRU eviction

Y N

Figure 5.6: Free ECC cache write operation.

a one-bit D are appended to locate the overflowed ECC; and a one-bit S is added to tell if

EDC is stored in the two encoding fields. As described in Figure 5.4, E and D fields for way

0 set 1 are 0000 and 0 in binary, respectively, which means ECC 0 and ECC 1 are stored in

the same block with data 0 and data 1. As for way 1, its S bit is set to 1 and D is 0. This

means an uncompressed data block is stored in way 1 and its tag is tag 2. If tag 3 is valid,

its corresponding data is zero. For the uncompressed data, its EDC is maintained in the two

encoding C fields and its ECC is stored at the 13th (1101 in binary) segment in the last cache

block in that set. The S, E and D for way 2 are 0, 15 and 1, which indicates that EDC of

data 3 is embedded together with the data and its ECC is stored in the 15th segment in the

last cache block. Since D points to data 3, it implicates that ECC 2 for data 2 is maintained

following data 2.

www.manaraa.com

75

Free ECC Read Operation. Free ECC cache read operation is similar to conventional

compressed cache access as illustrated in Figure 5.5. After tag matching, the corresponding S

and E bits are examined and D bit is checked. If E is unset, all the ECCs are stored following

the data. Otherwise, the EDC of D pointed data resides in the block or in C field if S is

set. Then one cache access is executed and either ECC or EDC and the compressed data are

fetched. The data decompression and error detection and correction are operated in parallel.

In a rare case that EDC detects an error but cannot correct it, a second cache access is required

to fetch its ECC located by ECC pointer E. Given the fact that cache error is a rare event,

(i.e. 10−3 FIT/bit), the case that two cache accesses are required for one cache read request is

negligible.

Free ECC Write Operation. Figure 5.6 illustrates the Free ECC cache write operation.

When a tag matches, the compressed data is placed to the cache block. In the case of a fat

write, LRU replacement is activated to select a proper position for the coming data. During the

operation, an eviction may be necessary since there is no sufficient space to hold that data. The

detailed replacement policy adopted is presented in Algorithm 1 in Section 5.5. If a position is

selected for the coming data, its ECC or EDC is selectively written into the same entry based

on the compressed data length and ECC pointer E.

We divide B∆I encodings into three groups to simplify the design. Group Gsmall are data

whose compressed lengths are less than 20 bytes and Glarge are data with compressed lengths

greater than 23 bytes. Group Gmedium are those with lengths in between the two.

Gsmall : {lopt | lopt ≤ 19}

Gmedium : {lopt | 19 < lopt ≤ 23}

Glarge : {lopt | 23 < lopt ≤ 37}

The partition of the compressed lengths into three group simplifies cache hardware implemen-

tation. In order to write the coming data block, the extended tag fields are fetched to check

the current cache status. Table 5.2 presents the detailed combinations for writing the coming

data blocks in a cache. If the two compressed data reside in one cache line and any of them

is from Gsmall or no one is from Glarge, both ECCs are placed in the same entry. If the two

www.manaraa.com

76

Existing data form Coming data Write form

small ECC X data + ECC

X X small data + ECC

X EDC X data + ECC

medium ECC
medium data + ECC

large data + EDC + 1-byte ECC

large ECC medium data + EDC

Table 5.2: Hardware implementation truth table. X means any case. The existing and coming

data are the two possible data in one cache block in a 2x compressed cache.

compressed data are from Gmedium and Glarge, one data’s ECC is placed in the reserved last

cache block depending on E bits. In the case that five-byte ECC is required to store in the

reserved block, we keep one-byte of the ECC in the data block and only maintain the other

four bytes in reserved entry to align the four-byte segment.

Table 5.1 also contains the details of different combinations. In the table, form A and form

B are two possible writing forms for a particular compressed data pattern in the worst case.

For example, data from group Gsmall will always writes its ECC together with itself. In the

most common cases, data from groups Gmedium and Glarge will be written together with their

ECCs. However, in the worst case where there is no sufficient fragment left, a one-byte EDC

is maintained following the data from Gmedium. For data from Glarge, the first byte of its ECC

and its one-byte EDC will be maintained together with data block. This guarantees that the

remaining ECC code word is exactly four bytes, which uses one segment in the last cache entry

in that set.

We implement the control logic with verilog HDL to calculate write location and update

status bits based on current cache status. The circuit is designed following the truth Table 5.2

and synthesized by Cadence RTL compiler with 65nm TSMC library. In total, the circuit

solely costs tens of standard cells and the power consumption is negligible. In the case that

the coming data is uncompressed, the special bit S is set and its EDC byte stores in the two C

fields. The ECC pointer E is updated to point to its ECC location. The status bits E, D and

S are updated correspondingly during ECC write to facilitate cache read request in future.

www.manaraa.com

77

Parameter Value

Processor 1 or 4 ooo cores, 4GHz, 14-stage pipeline

Functional units 2 IntALU, 4 LSU, 2 FPALU

IQ, ROB and LSQ IQ 32, ROB 128, LQ 48, SQ 44

Physical registers 128 Int, 128 FP, 128 BR, 128 ST

L1 caches (per core) 64KB Inst/64KB Data, 2-way, 16B line, hit latnecy: 3-cycle Inst,

3-cycle Data

L2 cache (shared) 0.5∼8MB, 8-way, 64B line, 14-cycle latency for 2MB cache

Memory 200 cycles latency

Table 5.3: Major simulation parameters.

5.4 Experimental Methodologies

We use a cycle accurate full system simulator Marss-x86 [78], which is for x86-64 architec-

ture. Both single- and four-core out-of-order configurations are simulated with a two-level cache

hierarchy. To evaluate the compression ratio of the proposed convergent allocation scheme, we

configure L2 cache with 64-byte block size with capacity varying from 512KB to 8MB. All the

27 compilable benchmarks from 29 SPEC CPU2006 suite [98] and 11 out of 13 PARSEC [8]

benchmarks are simulated. We create checkpoints for Marss simulator after initialization. After

a warm-up period, we sample the compression ratio every 100 million cycles for the following

500 million instructions. Table 5.3 shows the major parameters for the simulation platform.

For quad-core system simulation, we fix the L2 cache to 8-way 2MB capacity. The cache

LRU replacement policy is optimized to improve the compression ratio and system performance.

The detailed optimization is illustrated in Algorithm 1 in Section 5.5.

We construct four-core workloads based on their cache capacity sensitivity and compression

ratio following study [80]. The detailed workloads are presented in Table 5.4. The system

performance is characterized using SMT weighted speedup [96]
∑n

i
IPCmulti[i]
IPCsingle[i]

, where n is the

total number of applications running, IPCmulti[i] and IPCsingle[i] are IPC values of application

i running under multi-core and single-core environment, respectively.

www.manaraa.com

78

Workload Applications

C4S4 soplex, astar, hmmer, bzip2

C4S3 soplex, hmmer, xalancbmk, h264ref

C4S0 libquantum, gobmk, tonto, namd

C4S2 calculix, gamess, gromacs, leslie3d

C0S1 mcf, lbm, milc, sjeng

C4S3 soplex, astar, hmmer, libquantum

C3S4 bzip2, xalancbmk, h264ref, calculix

C4S1 soplex, libquantum, gobmk, tonto

C4S1 hmmer, namd, calculix, gamess

C1S1 soplex, mcf, lbm, milc

C1S1 hmmer, lbm, milc, sjeng

C0S4 sphinx3, perlbench, omnetpp, gcc

C2S4 sphinx3, omnetpp, soplex, astar

C2S4 perlbench, gcc, hmmer, h264ref

Table 5.4: Workload construction. C: compression ratio, S: sensitivity. Compression ratio is

evaluated using 2MB 8-way L2 cache and sensitivity is examined with L2 cache size varying

from 512KB to 8MB. CmSn consists of m benchmarks with high compression ratio and n

benchmarks with high cache capacity sensitivity.

5.5 Experimental Results

5.5.1 Comparison of Cache Allocation Schemes

In the simulation of the three cache allocation schemes, we first optimize cache replacement

policy based on LRU, as we observed that cache compression introduces extra replacement

due to fat write. For example, in a straightforward replacement policy in fixed-space and

convergent allocations, a fat write to DataA will introduce replacement of its neighbor, marked

as DataB. However, this will introduce thrashing if DataB is required next. Therefore, we

make the following optimization for a fat write. The policy is shown in Algorithm 1.

In the algorithm, it first searches if coming data block is suitable to any invalid cache block

before applying LRU algorithm directly. If so, the coming data block uses the invalid entry.

This optimization can improve compression ratio and avoid thrashing. In previous example,

DataA is a fat write to DataB and will introduce eviction to DataB. After optimization, DataA

is placed in another invalid entry and DataB is thus saved in cache.

Compression Ratio. Figure 5.7 presents cache compression ratio applying the three dif-

www.manaraa.com

79

Algorithm 1 Cache replacement policy based on LRU

while (Cache set scan not finished) do

if (find an invalidated way in set) then

if (data fit into way) then

write to the way and return

end if

end if

end while

while (Cache set scan not finished) do

if (find a way using LRU) then

if (data fit into way) then

write to the way and return

end if

end if

end while

if (fixed-space or convergent allocation) then

evict its neighbor

write data and return

end if

if (consecutive allocation) then

evict multiple blocks till data fit

write data and return

end if

ferent allocation schemes based on the optimized replacement policy. Compression ratio is

defined as the compressed cache capacity over uncompressed cache size and is normalized to

fixed-space allocation. Figure 5.7a shows the compression ratio for SPEC benchmarks of a 2MB

cache in detail. On average, the proposed convergent allocation improves the compression ratio

by 15.0% with 40.9% in maximum. The reason for the improvement is illustrated in Figure 5.3.

By applying B∆I compression algorithm in our simulation, the compressed data length can

be greater than half of cache block size, which is 32 bytes. Therefore, two data blocks may

not maintain in one cache entry by fixed-space allocation but by convergent allocation scheme.

Figure 5.7b presents the averages of SPEC and PARSEC benchmarks for caches varying from

512KB to 8MB. On average, convergent allocation improves the compression ratio by 12.6%,

13.3%, 15.0%, 16.0%, 15.8% for SPEC benchmarks of those cache sizes, respectively. The im-

provements for PARSEC benchmarks are 13.2%, 14.2%, 18.9%, 24.0% and 22.1%, respectively.

For same compressed data length, an efficient placement policy can improve cache capacity

www.manaraa.com

80

0.0

0.5

1.0

1.5

2.0

2.5

m
cf

so
p

le
x

lib
q

u
an

t…

lb
m

m
ilc

sp
h

in
x3

go
b

m
k

sj
en

g

gc
c

to
n

to

n
am

d

ca
lc

u
lix

as
ta

r

b
w

av
es

b
zi

p
2

ca
ct

u
sA

D
…

ga
m

es
s

ge
m

sF
D

TD

gr
o

m
ac

s

h
2

6
4

re
f

h
m

m
er

le
sl

ie
3

d

o
m

n
et

p
p

p
er

lb
e

n
ch

p
o

vr
ay

xa
la

n
cb

m
k

ze
u

sm
p

C
o

m
p

re
ss

io
n

 r
at

io Fixed-spacezallocation Convergentzallocation Consecutivezallocation

(a) Detailed compression ratio comparison for a 2MB cache for SPEC benchmarks.

5
12
K
B

1
M
B

2
M
B

4
M
B

8
M
B

5
12
K
B

1
M
B

2
M
B

4
M
B

8
M
B

AVG-SPEC AVG-PARSEC

(b) Average compression ra-
tio comparison for varied
cache capacities.

Figure 5.7: Comparison of cache compression ratio for three cache allocation schemes for both

SPEC and PARSEC benchmarks. The legend and y-axis for right figure is not presented to

save space and it is the same to left figure.

utilization.

When compared with consecutive allocation, the results are interesting. For some bench-

marks, the proposed convergent allocation performs higher compression ratio than consecutive

allocation. The possible reason is that a fat write may evict multiple data blocks in our opti-

mized cache LRU replacement policy as illustrated in Algorithm 1. This reduces the number

of effective data blocks in the cache, but may benefit the system performance. We thus did a

profiling simulation that compares cache compression ratio for the same data placed in cache

using the three allocation schemes. In profiling simulation, cache is physically configured to 2x

capacity. We sample the 2x data and virtually place them in a 1x sized compressed cache using

those allocation schemes. Note that 1x sized compressed cache targets 2x capacity depends on

compression ratio. It therefore shows the layout impact to compression ratio.

Figure 5.8 presents the results. Figure 5.8a compares the profiled compression ratio for

SPEC benchmarks. The benchmark names are represented by the first three characters to

make the figure readable. Part of the combinations of benchmarks and cache capacity con-

figurations are not presented as that large cache is not fully utilized. It is obvious that our

proposed convergent allocation scheme improves cache compression ratio compared to fixed-

space allocation. The maximum improvement is 30.8% for gamess benchmark for 1M cache

www.manaraa.com

81

0.90

1.10

1.30

1.50

1.70

1.90

2.10

5
1

2
k

1
m

2
m

4
m

8
m

1
6

m

5
1

2
k

1
m

2
m

4
m

8
m

1
6

m

5
1

2
k

1
m

2
m 5
1

2
k

1
m

2
m

4
m 5
1

2
k

1
m

2
m 5
1

2
k

1
m

2
m

4
m 5
1

2
k

1
m

2
m

4
m 5
1

2
k

1
m

2
m 5
1

2
k

1
m

2
m

4
m 5
1

2
k

1
m

2
m

4
m

8
m

1
6

m

5
1

2
k

1
m

2
m

4
m 5
1

2
k

1
m 5
1

2
k

1
m

2
m

4
m

8
m 5
1

2
k

1
m

2
m 5
1

2
k

1
m

2
m

4
m

8
m

1
6

m

5
1

2
k

1
m

2
m

4
m

8
m 5
1

2
k

1
m

2
m

4
m 5
1

2
k

1
m

2
m

4
m

8
m

1
6

m

5
1

2
k

1
m

2
m

4
m

8
m

1
6

m

sop lbm sph gob sje gcc ton cal ast bwa bzi gam gro h26 les omn xal zeu AVG

C
co

m
p

re
ss

io
n

 r
at

io
fixed-spaceuallocation convergentuallocation consecutiveuallocation

(a) Profiled cache compression ratio for SPEC benchmarks

0.80

1.00

1.20

1.40

1.60

1.80

2.00

5
1

2
k

1
m

5
1

2
k

1
m

2
m

4
m

8
m

5
1

2
k

1
m

2
m

4
m

5
1

2
k

1
m

5
1

2
k

1
m

2
m

4
m

8
m

5
1

2
k

1
m

5
1

2
k

1
m

2
m

4
m

8
m

5
1

2
k

1
m

2
m

4
m

8
m

5
1

2
k

1
m

2
m

5
1

2
k

1
m

2
m

4
m

8
m

5
1

2
k

1
m

2
m

4
m

8
m

5
1

2
k

1
m

2
m

4
m

8
m

bla canneal bodytrack str dedup ferret fluidanimate freqmine swaptions vips x264 AVG

C
o

m
p

re
ss

io
n

 r
at

io

fixed-spaceVallocation convergentVallocation consecutiveVallocation

(b) Profiled cache compression ratio for PARSEC benchmarks

Figure 5.8: Comparison of cache compression ratio for three cache allocation schemes for varied

cache capacities. Due to space limit, part of the benchmarks are represented by its first three

characters. Large cache sizes for which benchmarks cannot fully utilize are not presented.

capacity. On average, convergent allocation scheme improves compression ratio by 7.3%, 8.9%,

8.5%, 6.8%, 4.9% and 3.5% for 512KB, 1MB, 2MB, 4MB, 8MB and 16MB cache capacities re-

spectively, compared to fixed-space allocation. When being compared to the ideal compression

ratio of consecutive allocation, it is 3.6%, 3.4%, 3.8%, 3.7%, 2.7% and 2.7% lower for those

cache capacities, respectively. Figure 5.8b presents the comparison for PARSEC benchmarks

and it shows the same trend. On average, convergent allocation improves compression ratio by

10.8%, 9.3%, 9.7%, 10.5% and 13.3% for the varied cache capacities respectively, compared to

fix-space allocation. The differences are merely 2.1%, 2.2%, 2.6%, 2.7% and 3.5% compared to

consecutive allocation scheme for these cache capacities, respectively.

System Performance. Figure 5.9 illustrates the performance comparison of the three

allocation schemes for single- and four- core systems. Benchmarks not presented here are in-

sensitive to cache capacity. The left part of Figure 5.9a shows system performance comparison

www.manaraa.com

82

1R10

0R95

0R97

0R99

1R01

1R03

1R05

1R07

m
cf

so
p

le
x

sp
h

in
x3

go
b

m
k

sj
en

g

gc
c

ca
lc

u
lix

b
zi

p
2

gr
o

m
ac

s

h
m

m
er

le
sl

ie
3

d

o
m

n
et

p
p

as
ta

r

p
er

lb
en

ch

xa
la

n
cb

m
k

N
o

rm
al

iz
e

d
 I

P
C

FixedEspace-allocation
Convergent-allocation
Consecutive-allocation

5
12

K

1
M

2
M

4
M

8
M

5
12

K

1
M

2
M

4
M

8
M

AVGESPEC AVGEPARSEC

(a) Single core system performance comparison.

0.98

0.99

1

1.01

1.02

1.03

1.04

C
4

S4

C
3

S4

C
2

S4

C
2

S4

C
0

S4

C
4

S3

C
4

S3

C
4

S2

C
4

S1

C
4

S1

C
1

S1

C
1

S1

C
0

S1

C
4

S0

A
V

G
-S

P
EC

A
V

G
-P

A
R

SE
C

N
o

rm
al

iz
e

d
 w

e
ig

h
te

d
 S

M
T

sp
e

e
d

u
p

Fixed-spacevallocation

Convergentvallocation

Consecutivevallocation

(b) Four-core system performance comparison.

Figure 5.9: Single- and four- core system performance comparison of three cache allocation

schemes.

for a 2M L2 cache in detail and the right part presents the average results for varied cache

capacities. All the IPCs are normalized to fixed-space allocation scheme. On average, there

is 1∼2% improvement for convergent allocation compared to fixed-space allocation. The im-

provement comes from the increased cache capacity from compressing. Note that consecutive

allocation performs better than convergent allocation in almost all cases in the simulation al-

though its compression ratio can be lower than convergent allocation as shown in Figure 5.7.

This presents the fact that both cache capacity and the importance of data blocks maintained

in cache affect system performance. Figure 5.9b presents performance results for four-core

system with 2M LLC. All data are normalized to fixed-space allocation. On average, conver-

gent allocation improves system performance by 1∼2% and higher improvement comes from

capacity-sensitive workloads.

www.manaraa.com

83

0q

20q

40q

60q

80q

100q

lb
m

as
ta
r

sj
en

g

sp
h
in
x3

b
w
av
es

b
zi
p
2

to
n
to

so
p
le
x

p
er
lb
en

ch

go
b
m
k

m
ilc

h
2
6
4
re
f

ca
ct
u
sA
D
M

m
cf

gc
c

ca
lc
u
lix

p
o
vr
ay

h
m
m
er

le
sl
ie
3
d

gr
o
m
ac
s

o
m
n
et
p
p

n
am

d

xa
la
n
cb
m
k

ze
u
sm

p

ga
m
es
s

lib
q
u
an
tu
m

ge
m
sF
D
TD

A
V
G
ES
P
EC

A
V
G
Ep
ar
se
c

large medium small

(a) Compressed data patterns in a 16-way set associative, 2M L2 cache. Groups
are defined following Table 5.1.

0q

20q

40q

60q

80q

100q

lb
m

as
ta
r

sj
en

g

sp
h
in
x3

b
w
av
e
s

b
zi
p
2

to
n
to

so
p
le
x

p
er
lb
e
n
ch

go
b
m
k

m
ilc

h
2
64
re
f

ca
ct
u
sA
D
M

m
cf

gc
c

ca
lc
u
lix

p
o
vr
ay

h
m
m
er

le
sl
ie
3
d

gr
o
m
ac
s

o
m
n
et
p
p

n
am

d

xa
la
n
cb
m
k

ze
u
sm

p

ga
m
es
s

lib
q
u
an
tu
m

ge
m
sF
D
TD

A
V
G
ES
P
EC

A
V
G
Ep
ar
se
c

LL ML S

(b) Mathematical probability for combinations of two compressed patterns.

Figure 5.10: Compressed data patterns rate and probability of various combinations. “LL”:

both data blocks are from group large; “ML”: two data blocks are from group medium and

group large; “S”: at least one data is from group small or both data blocks are from group

medium. In combination “S”, there is sufficient fragment in the same cache entry to place

ECC.

5.5.2 B∆I Data Compressed Pattern Analysis

We analyze B∆I data compression patterns before presenting the details of Free ECC re-

sults. Figure 5.10a presents the ratio of different compression patterns in B∆I compression

algorithm for real data in L2 cache. We group those patterns into three groups following the

definition in Section 5.3.2. It is obvious that group Gsmall occupies a large portion across the

three groups for most benchmarks. It is as high as 100% for a few benchmarks, i.e. libquantum

and gemsFDTD. On average, the ratios are 80.5%, 7.3% and 12.3% for small, medium and

large groups respectively for SPEC benchmarks. Those results are 97.2%, 1.0% and 1.8% for

PARSEC benchmarks. The higher rate for small and medium group means higher probability

that fragments left in cache is sufficient for ECC.

In Table 5.2, we analyze the writing forms for coming data blocks. As long as one of

www.manaraa.com

84

-0.3

0.2

0.7

1.2

1.7

2.2

-0.3

0.2

0.7

1.2

1.7

2.2

m
cf

so
p

le
x

lib
q

u
an

tu
m

lb
m

m
ilc

sp
h

in
x3

go
b

m
k

sj
en

g

gc
c

to
n

to

n
am

d

ca
lc

u
lix

as
ta

r

b
w

av
es

b
zi

p
2

ca
ct

u
sA

D
M

ga
m

e
ss

ge
m

sF
D

TD

gr
o

m
ac

s

h
26

4
re

f

h
m

m
er

le
sl

ie
3d

o
m

n
et

p
p

p
er

lb
en

ch

p
o

vr
ay

xa
la

n
cb

m
k

ze
u

sm
p

ConventionalzECCzutilization FreezECCzutilization

Losszofzcompressionzratio

(a) Effective cache utilization comparison of conventional ECC and un-
optimized Free ECC design for SPEC CPU2006 benchmarks on 2MB
L2 cache.

-0.3

0.2

0.7

1.2

1.7

2.2

-0.3

0.2

0.7

1.2

1.7

2.2

2
56

K

5
12

K

1
M

2
M

4
M

8
M

2
5

6
K

5
1

2
K

1
M

2
M

4
M

8
M

AVG-SPEC AVG-PARSEC

ConventionalzECCzutilization
FreezECCzutilization
OptimizedzFreezECCzutilization
Losszofzcompressionzratio

(b) Average effective cache utiliza-
tion comparison for SPEC and PAR-
SEC benchmarks on varied cache ca-
pacities.

Figure 5.11: Comparison of effective cache capacity utilization of conventional ECC, optimized

Free ECC and Free ECC cache design.

the two data blocks is from group small or both data are from group medium, there is suffi-

cient fragment left in the same data entry to maintain ECC. We thus mathematically analyze

the probability that ECC can be maintained in fragment based on the patterns ratio in Fig-

ure 5.10a. Figure 5.10b shows the mathematical deduction results. In the figure, “S” represents

a combination that at least one data is from group small or both data are from group medium.

“ML” means the two data are from group medium and large. “LL” means both data are from

group large. Note that case “LL” is impractical in reality. It is obvious that for most of the

compressed data, there is sufficient fragment left in the same data entry to maintain ECC. In

such cases, the proposed Free ECC design thus introduces no penalty to compression ratio as

ECCs are placed in otherwise unused fragments following the data and no reservation space

in last cache entry is required. The average probability of such cases is as high as 91.6% and

99.2% for SPEC and PARSEC benchmarks, respectively by mathematical deduction. This

firmly consolidates our proposal to embed ECC into the otherwise unused fragments. The

Free ECC design can thus save extra space required for ECC and power consumption while

introduces minimal cost to compression ratio.

www.manaraa.com

85

5.5.3 Effective Utilization of Cache Capacity

Figure 5.11 shows the comparison of effective cache capacity utilization for compressed

cache with conventional ECC and Free ECC cache design. As illustrated in the figure, the

compression ratio is reduced slightly by 3.0%, 3.6%, 4.4%, 3.6%, 3.0% and 1.7% for 256KB,

512KB, 1MB, 2MB, 4MB and 8MB caches, respectively for SPEC benchmarks. Those values

are 3.2%, 4.1% 4.5%, 5.5%, 4.8% and 3.3% for PARSEC benchmarks. Although Free ECC

cache reduces compression ratio, it still gains in effective capacity utilization as conventional

ECC has a 12.5% overhead for ECC storage. On average, the gains are 9.0%, 8.2%, 7.6%,

8.3%, 8.9%, and 10.5% for those cache capacities for SPEC benchmarks, respectively. Those

improvements are 8.9%, 7.9%, 7.4%, 6.4%, 7.1% and 8.8% for PARSEC benchmarks. With

higher compression ratio, the improvement of effective utilization is potentially higher and the

highest improvement is 0.22 in theory, which is gained by several benchmarks, e.g. zeusmp,

povray, and gemsFDTD. For a few benchmarks that can not hold ECC in fragments efficiently,

there is slight loss in utilization. For example, the loss is 1.7% for gromacs with 2MB physical

cache capacity.

With optimization that no ECC storage is required for clean data blocks, loss of compression

ratio is reduced slightly and capacity utilization is improved. The details of each benchmark are

not presented in figure to make it readable and the average results are shown in Figure 5.11b.

For some benchmarks, the improvement is as high as 0.029 (i.e. leslie3d), which means for the

2MB cache simulated, optimization can improve effective cache capacity by 60KB compared

to unoptimized Free ECC design. Although the improvement is not significant on average, it

gains without any extra cost.

We analyze the details for optimized Free ECC design. Figure 5.12 presents clean data

blocks ratio in cache. As it shows, 12 out of 27 simulated SPEC CPU2006 benchmarks have

more than 50% of clean blocks in entire cache. On average, 47.5% of data blocks are clean for the

simulated 2MB L2 cache. This provides opportunity for our proposed optimization that there

is no need to maintain ECC for clean data blocks. It therefore reduces requirement of fragments

in cache to maintain ECC and reduces the negative impact of Free ECC design. The clean

www.manaraa.com

86

RM

2RM

4RM

6RM

8RM

1RRM

ca
lc
u
lix

o
m
n
et
p
p

h
m
m
er

b
w
av
es

p
o
vr
ay

go
b
m
k

gc
c

ga
m
es
s

sj
en

g

b
zi
p
2

h
2
6
4
re
f

gr
o
m
ac
s

as
ta
r

p
er
lb
en

ch

xa
la
n
cb
m
k

lb
m

ze
u
sm

p

to
n
to

n
am

d

ge
m
sF
D
TD m
cf

ca
ct
u
sA
D
M

so
p
le
x

m
ilc

sp
h
in
x3

le
sl
ie
3
d

lib
q
u
an
tu
m

A
V
G
ES
P
EC

x2
6
4

b
o
d
yt
ra
ck

vi
p
s

fr
eq

m
in
e

ca
n
n
ea
l

b
la
ck
sh
o
le
s

fl
u
id
an
im

at
e

sw
ap
ti
o
n
s

fe
rr
et

st
re
am

cl
u
st
…

d
ed

u
p

A
V
G
EP
A
R
SE
C

invalid dirty clean

Figure 5.12: Clean data blocks rate for SPEC and PARSEC benchmarks in a 2MB L2 cache.

0.94

0.95

0.96

0.97

0.98

0.99

1

m
cf

so
p

le
x

lib
q

u
an

tu
m

lb
m

m
ilc

sp
h

in
x3

go
b

m
k

sj
en

g

gc
c

to
n

to

n
am

d

ca
lc

u
lix

as
ta

r

b
w

av
es

b
zi

p
2

ca
ct

u
sA

D
M

ga
m

es
s

ge
m

sF
D

TD

gr
o

m
ac

s

h
2

6
4

re
f

h
m

m
er

le
sl

ie
3

d

o
m

n
et

p
p

p
er

lb
en

ch

p
o

vr
ay

xa
la

n
cb

m
k

ze
u

sm
p

N
o

rm
al

iz
ed

 IP
C

ConventionalrECC FreerECC

(a) Single-core system performance comparison of conventional ECC
with Free ECC cache.

0.975

0.98

0.985

0.99

0.995

1

2
5

6
K

5
1

2
K

1
M

2
M

4
M

8
M

2
5

6
K

5
1

2
K

1
M

2
M

4
M

8
M

AVG-SPEC AVG-PARSEC

ConventionalpECC
OptimizedpFreepECC
FreepECC

(b) Average single-core system per-
formance comparison for varied
cache capacities.

Figure 5.13: Comparison of cache performance for conventional ECC with Free ECC cache.

data block ratio for PARSEC benchmarks is higher, for which, 8 out of 11 simulated PARSEC

benchmarks have more than 60% clean data blocks in cache. On average, the clean blocks rate

is 71.3%, which explains that the proposed optimization can improve cache compression ratio

and cache capacity utilization.

5.5.4 Performance of Free ECC

Figure 5.13 illustrates the system performance comparison of Free ECC with conventional

compressed cache for single-core configuration. Figure 5.13a presents details for a 2MB physical

cache for SPEC benchmarks and Figure 5.13b shows the average performance comparison for

varied cache capacities. The optimized Free ECC cache performance is included. Both the

detailed and average performance show that the performance loss is around 1% for Free ECC

design for all cache configurations for both SPEC and PARSEC benchmarks. As most ECC

www.manaraa.com

87

0.92

0.94

0.96

0.98

1

C
4

S4

C
4

S3

C
4

S3

C
4

S2

C
4

S1

C
4

S1

C
4

S0

C
3

S4

C
2

S4

C
2

S4

C
1

S1

C
1

S1

C
0

S1

C
0

S4

A
V

G
-S

P
EC

A
V

G
-P

A
R

SE
C

Conventional ECC Free ECC

N
o

rm
al

iz
e

d
w

ei
gh

te
d

 S
M

T
sp

ee
d

u
p

Figure 5.14: Four-core system performance comparison of conventional ECC with Free ECC.

kW6

kW65

kW7

kW75

kW8

kW85

kW9

kW95

N

N

NWN

NWD

NW3

NW4

NW5

NW6

NW7

NW8

NW9

B F B F

mcf sop lib lbm mil sph gob sje gcc ton nam cal ast bwa bzi cac gam gem gro hD6 hmm les omn per pov xal zeu AVGd
S

AVGd
P

N
o

rm
al

iz
ed

kE
n

er
gy

-D
el

ay
kP

ro
d

u
ct

Extrareccrpower Readrpower Writerpower Leakagerpower NormalizedrEDP

L2
kC

ac
h

e
kp

o
w

e
rk

(W
/B

an
k)

Figure 5.15: 2MB L2 cache power consumption comparison of conventional ECC cache and

Free ECC cache design in a single-core machine. AVG-S and AVG-P mean the average of SPEC

and PARSEC benchmarks. B: baseline, F: Free ECC.

can fit into unused fragments in compressed cache, there is only small capacity loss for ECC

reservation, which affects system performance slightly. The proposed optimization improves

system performance slightly as show in Figure 5.13b. Although the improvements are minimal,

they are obtained without any cost.

Figure 5.14 presents performance of four-core configuration. The cache capacity is fixed

to 2MB in physical. Consistent with single core results, the loss is within 1% for both SPEC

and PARSEC workloads. The results show that Free ECC design efficiently uses the fragments

left in compressed cache schemes and introduces negligible impact to cache performance. The

performance for optimized Free ECC design is not presented here and it is consistent with

single core results. The improvement is slight but the gain is obtained without extra cost.

www.manaraa.com

88

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0

1

2

3

4

5

6

7

8

256K 512K 1M 2M 4M 8M 256K 512K 1M 2M 4M 8M

AVG-SPEC AVG-PARSEC

N
o

rm
al

iz
ed

)E
n

er
gy

-D
el

ay
)P

ro
d

u
ct

L2
)C

ac
h

e
)P

o
w

er
)(

W
/b

an
k)

ConventionalpECCppower FreepECCppower

ConventionalpECCpEDP FreepECCpEDP

Figure 5.16: Average L2 cache power consumption for conventional ECC and Free ECC cache

design for SPEC and PARSEC benchmarks. Cache capacity varies from 512KB to 8MB.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

B F B F B F B F B F B F B F B F B F B F B F B F B F B F B F B F

C4S4 C4S3 C4S3 C4S2 C4S1 C4S1 C4S0 C3S4 C2S4 C2S4 C1S1 C1S1 C0S1 C0S4 AVG-S AVG-P

N
o

rm
al

iz
e

d
)E

n
e

rg
y-

D
e

la
y)

P
ro

d
u

ct

ExtraReccRpower ReadRpower WriteRpower

LeakageRpower NormalizedREDP

L2
)C

ac
h

e
)P

o
w

e
r)

(W
/B

an
k)

Figure 5.17: 2MB L2 cache power consumption comparison of conventional ECC cache and

Free ECC cache design in a four-core system. B: baseline, F: free ECC design.

5.5.5 Cache Power Consumption

We further evaluate cache power consumption of Free ECC when compared with conven-

tional ECC design of compressed cache using CACTI 5.3 [102]. The cache is configured with

two banks and 45nm technology is applied. Figure 5.15 presents the power consumption for

2MB cache with single core configuration for SPEC benchmarks in detail. The baseline is the

conventional compressed cache with 12.5% storage overhead for ECC. For 2MB cache capacity,

the Free ECC design reduces the power consumption by 9.0% and 9.1% on average for SPEC

and PARSEC benchmarks, respectively. The maximum improvement is 11.1% for gemsFDTD

because the ratio of extra ECC write is small. As the figure shows, Free ECC cache introduces

extra ECC write which increases the write power. However, it significantly reduces the leakage

www.manaraa.com

89

power, which dominates the power consumption.

Figure 5.16 illustrates the average power consumption for caches varying from 512KB to

8MB. Free ECC cache reduces the consumed power by 2.7%, 5.1%, 6.9%, 9.0%, 9.3% and

10.0% for SPEC benchmarks for those caches, respectively. Those improvements are 3.1%,

5.4%, 7.3%, 9.1%, 9,4% and 9.9% for PARSEC benchmarks. As capacity grows, the leakage

power increases and Free ECC design can significantly reduce the overhead in conventional

ECC cache, thus power efficiency improves with the increase of cache size.

The detailed power consumption of optimized Free ECC design is not presented in figure as

it is consistent with performance improvement. The optimization can reduce cache write power

and leakage power slightly. As it avoids partial writing of ECC to the reserved cache entry and

improves system performance compared to Free ECC, the power consumption is thus reduced

slightly.

Figure 5.17 presents the 2MB L2 cache power consumption for four-core system. On av-

erage, Free ECC design saves power by 9.3% as it significantly reduces the leakage power.

As shown in the figure, Free ECC saves slightly more power for workloads that with higher

compression ratios. This is because the extra ECC write is less than that of workloads with

lower compression ratios. Overall, Free ECC design removes the dedicated storage of ECC in

conventional ECC cache and thus saves the power consumption of cache memories.

5.5.6 Energy-Delay Product Improvement

Figures 5.15, 5.16 and 5.17 also present the Energy-Delay Product (EDP) comparison for

conventional compressed ECC cache and Free ECC cache. Across all configurations with all

workloads, Free ECC design improves system EDP. On average, Free ECC cache improves EDP

by 1.1%, 3.2%, 4.6%, 8.4%, 8.8% and 8.8% for SPEC benchmarks for varied cache capacities

from 256KB to 8MB, respectively. Higher cache capacity presents higher EDP saving which is

consistent with the trend of power saving. Those improvements for PARSEC benchmarks are

2.2%, 3.4%, 5.1%, 8.0%, 9.4% and 9.4%, respectively. These results show that the performance

loss caused by Free ECC design is slight and its saving of power consumption offsets the

performance loss.

www.manaraa.com

90

5.6 Summary

We have presented a low-cost and efficient reliability scheme for compressed last-level caches.

An efficient cache allocation scheme is designed for compressed data layout and Free ECC cache

organization is proposed based on this scheme to explore the hidden error protection capability

of compressed cache. The design fits ECC/EDC into small fragments left in compressed cache

to remove the dedicated ECC storage required in conventional ECC design. It significantly

improves the effective cache capacity utilization and power efficiency, while introducing minimal

impact to system performance. The Free ECC is specific for cache compression and the design

is simple, effective and power efficient.

www.manaraa.com

91

CHAPTER 6. MEMGUARD: A LOW COST AND ENERGY

EFFICIENT DESIGN TO SUPPORT AND ENHANCE MEMORY

SYSTEM RELIABILITY

The conventional reliability design is to use redundant memory bits for error detection and

correction, with significant storage, cost and power overheads. In this chapter, we propose

a novel, system-level scheme called MemGuard for memory error detection. With OS-based

checkpointing, it is also able to recover program execution from memory errors. The proposed

MemGuard design is much stronger than SECDED in error detection capability and it incurs

negligible hardware cost and energy overhead, no storage overhead, and is compatible with

various memory organizations. We have comprehensively investigated and evaluated the fea-

sibility and reliability of the scheme. Our mathematical deduction and synthetic simulation

prove that MemGuard is robust and reliable.

6.1 Introduction

Main memory error protection is generally implemented with redundant information stored

in memory devices. A conventional ECC memory module uses SECDED code with a 12.5%

storage and power overhead. Chipkill Correct [15, 64] has additional capability of Single Device

Data Correction (SDDC) to tolerate multiple errors from a single chip with high power con-

sumption. Both of these designs are incompatible with non-ECC memory modules. They

also put a restriction on memory organization such that recently proposed memory sub-

ranking [105, 121, 2, 1], which improves memory energy efficiency, may not be used. The

majority of consumer-level computers, including desktop and laptop computers and mobile

devices, have not yet adopted any memory error protection scheme.

www.manaraa.com

92

In this chapter, we propose MemGuard, a system-level scheme with lightweight hardware

extension to support or enhance memory reliability for a wide spectrum of computer systems.

The core part of MemGuard is a low-cost and highly-effective mechanism of memory error

detection, which is revised from more complex designs of memory integrity verification [4, 99]

proposed for secure processors. By maintaining a read log hash (ReadHash) and a write log

hash (WriteHash), 128-bit each, MemGuard can detect multi-bit errors of the main memory

in very strong confidence. Conceptually, ReadHash is a hashed value of the log of all read

accesses from the main memory, and WriteHash is one for all write accesses to the main

memory. For each access, the logged data is a tuple (address, data). Periodically or at the

end of program execution, MemGuard synchronizes ReadHash and WriteHash to the same

point of execution and then matches them. A mismatch means that the result of at least one

read does not match that of the previous write to the same memory address, and therefore a

memory error must have happened.

MemGuard does not have hardware memory error correction as ECC and Chipkill Correct

do, but is much stronger in error detection. It utilizes (and relies on) an OS-based checkpointing

system for error recovery. If a memory error is detected during the execution of a given

program, the program will be rolled back to the latest checkpointed state. Since memory

error is relatively infrequent (hours for memory of gigabytes), checkpointing can be done at

a slow pace and the performance degradation from checkpointing is insignificant. MemGuard

is very useful for computers that have no other memory error protection. For consumer-level

computers in particular, MemGuard does not require any change to computer motherboards

or memory modules, the hardware cost of MemGuard itself is negligible, and its protection can

be selectively enabled for programs for which computation reliability is desired. Additionally,

MemGuard is compatible with sub-ranked memories as well as narrow-ranked memories used

in mobile devices.

MemGuard is also useful for large-scale, high-performance computing applications, in which

a single-node crash may lead to checkpoint rollback of many computing nodes. Many of those

applications already use checkpointing or redundant nodes or both, otherwise they may not

run to completion [38, 22]. With MemGuard, they do not have to run computers with ECC

www.manaraa.com

93

memory, which leads to reduced cost and improved energy efficiency. For computers of ECC

or Chipkill Correct memories, MemGuard can further enhance memory reliability by reducing

the probability of silent data corruption (false negative), particularly when single-bit error

correction occurs. MemGuard alone, however, may not be suitable for commercial workloads

that require both high availability and instant response, as checkpoint recovery may cause a

delay visible to end users.

MemGuard is motivated by memory integrity verification using read and write log hashes [99]

in secure processor, but the design objective and complexity are very different. In secure pro-

cessor design, the hash function must be very strong to repel carefully crafted attacks from

adversaries, and particularly it has to include a timestamp per memory block to detect replay

attacks. Significant design complexity, storage and energy overheads, and high cost can be

justified. In memory reliability design, the error pattern is random and unintentional, and

for consumer-level computers the cost has to be contained. In the design of MemGuard, we

carefully choose a simple, non-cryptographic hash function to minimize the impact on energy

efficiency and cost, and has dropped the use of timestamp. Had timestamp been used, there

would be significant storage, performance and energy efficiency overhead for modern DDRx

memories. To our best knowledge, we are the first to adopt such a scheme solely for memory

reliability in conventional computers and we comprehensively evaluate and prove its feasibility

and reliability for error protection.

The rest of the chapter is organized as follows. Section 6.2 introduces background of main

memory organization variations and related work. Section 6.3 presents the details of MemGuard

design scheme. Section 6.4 describes the evaluation methodologies and the results are presented

and analyzed in Section 6.5. Finally, Section 6.6 concludes the chapter.

6.2 Background and Related Work

6.2.1 Memory Organization Variants

Various memory structures and organizations have been proposed to improve memory per-

formance or energy efficiency. In sub-ranked DRAM memories [105, 121, 2, 1], the number of

www.manaraa.com

94

DRAM devices in a rank is reduced so as to reduce DRAM operation power spent on precharge

and activation. However, the reduced number of devices in a rank presents a new challenge

to memory error protection as it breaks the 8:1 ratio of conventional SECDED design. The

details are presented in Section 2.4. Another type of memory structure stacks DRAM dies by

Through-Silicon Via (TSV) technology to reduce its power consumption and improve band-

width and capacity. One promising product is Hybrid Memory Cube (HMC) [34] with high

bandwidth and low power consumption and it is projected to appear in market in 2014. Such a

product drastically changes conventional DRAM organization and also presents challenges for

memory error protection. MemGuard does not put any constraints on memory organization

and thus can work with those new organizations.

6.2.2 Related Work

There have been many studies on memory system reliability [113, 114, 103, 73]. Most of

them focus on error correction for phase change memory and DRAM at memory module level.

One of the most recent studies closely related to our work is ArchShield [73]. It proposes an

architectural framework to tolerate fabrication faulty cells (hard error) induced by the extreme

scaling of DRAM. In their design, a fault map is used to record all the faulty cell locations

obtained by built-in self test. By consulting the fault map, it maintains replications of those

word in memory space for error correction. MemGuard is very different from ArchShield, and

they serve for different purposes. MemGuard targets soft and intermittent errors rather than

hard errors, and it does not have to maintain faulty cell locations.

6.3 MemGuard Design

6.3.1 Incremental Hash Functions

Incremental hash function is first proposed by Mihir Bellare et al [7] in 1990s. Such a hash

function has the property that the cost to update the result hash upon a modification to the

original message is proportional to the modification. Consider a message M and its hash value

H(M). With modifications δ to the message, the result message is denoted as M ′ = M + δ, in

www.manaraa.com

95

which + denotes a modification such as to replace, insert or delete a data block of the message.

Incremental hash function can update the result hash of modified message using the following

equation:

H(M ′) = H(M) +H(δ)

where = and + are equality and modification operations, respectively, for the defined hash

function. The equation means that as long as we have H(M) and H(δ), we could calculate the

result hash. There is no need to retrieve the original message information of M .

Multiset hash functions are a particular type of incremental hash function, operating on

multiset (set) [4]. A multiset is defined as a finite unordered collection of elements where the

occurrence of each element can be greater than one. If the occurrence of each element is exactly

one time, the multiset is reduced to a set. Multiset hash functions are incremental and the

result hash is independent of the ordering of the input elements. In detail, if we use ∪ to denote

the union operation of multiset, the properties of multiset can be denoted using the following

two equations:

H(M ∪ {b}) = H(M) +H H({b}) (6.1)

H({b1}) +H H({b2}) = H({b2}) +H H({b1}) (6.2)

where +H denotes defined hash addition operation. Equations (6.1) and (6.2) show the prop-

erties of additivity and commutativity, respectively, for multiset hash functions.

These two properties can be explored in main memory system to create a fingerprint of

memory accesses. In that scenario, each memory access is regarded as an item and a sequence

of memory accesses is considered as a multiset as there exists duplicated memory accesses to

same memory address. Define H({q}) = Hs(sq), where Hs is a hash function that takes input

of a string sq formed of (address, data) pair of the memory request q. The details of selecting

Hs hash function are presented in Section 6.3.4. Based on the two properties of multiset hash

function, we thus have the hash for a sequence Q of memory requests qi (i ∈ [1, N]) below

H(Q) = Hs(sq1) +H Hs(sq2) +H · · ·+H Hs(sqN) (6.3)

, where Q is a multiset that Q = {q1}∪{q2} · · ·∪{qN}. Following the two properties of multiset

hash functions, the result hash H(Q) is irrelevant to the ordering of the requests and it can be

www.manaraa.com

96

calculated incrementally by adding the hash value of coming memory request. In other words,

H(Q) represents a fingerprint of a sequence of memory requests.

The previous study [4] proposes four types of multiset hash functions: MSet-XOR-Hash,

MSet-Add-Hash, MSet-Mu-Hash and MSet-VAdd-Hash based on four different operations: bi-

nary XOR, conventional addition, multiplication and vector addition, respectively. That means

the +H can be any of these four operations to form a multiset hash function based on a strong

hash Hs. MSet-XOR-Hash, MSet-Mu-Hash and MSet-VAdd-Hash are not proper in MemGuard

design as they either merely support set collision resistance or introduce high overhead because

of operational complexity. We choose MSet-Add-Hash for being multiset collision resistant and

simple in operation. The function uses simple addition operation and outputs the lower m bits

of the sum, where m is the output length of hash function Hs.

6.3.2 Log Hash Based Error Detection

In MemGuard design, error detection is implemented by maintaining and cross-checking a

read log hash and a write log hash maintained in the memory controller. The two hashes are

denoted as ReadHash and WriteHash, respectively, which conceptually log the (address,

data) pairs of memory reads and memory writes. Here memory reads and memory writes are

different from actual reads and writes to the main memory, which will be discussed soon. At

runtime, the two hashes are updated upon memory events. Periodically and at the end of a

program execution, MemGuard synchronizes the ReadHash and the WriteHash to ensure

every memory read is logged in ReadHash and every write is logged in WriteHash. If no

error occurs, the two hash values must match to each other. The details for selecting a hash

function are discussed in Section 6.3.4.

Figure 6.1 and Algorithm 2 show the steps of updating the ReadHash and the Write-

Hash. We assume that the last-level cache is write-back and write-allocate. In the beginning,

when the OS loads the program to be executed into memory, the memory controller will log

each write of a memory block into WriteHash, i.e. to hash the pair (address, data) of the

memory block into WriteHash. A memory block is a block of memory of the cache block size.

Note that we do not assume the OS will load all memory pages of the program into memory

www.manaraa.com

97

Algorithm 2 MemGuard error detection algorithm

Initialization Operation

function init block (T , Address, predefined Data) {
update T .WriteHash with the hash of (Address.predefined Data)

write (predefined Data) to address (Address) in memory storage

}

————————————————————

Run-Time Operation

when there is a cache miss

function read block (T , Address) {
read the Data from Address in memory

update T .ReadHash with the hash of (Address.Data)

}
and store the block in Cache

when there is cache eviction

function write block (T , Address, Data) {
update T .WriteHash with the hash of (Address.Data)

if block is dirty then

write (Data) to address (Address) in memory storage

end if

}

————————————————————

Integrity Check Operation

function integrity check (T) {
NewT = (0, 0)

while block covered by T
if block is not in Cache then

call read block (T , Address)

update NewT .WriteHash with the hash of (Address, Data)

end if

end while

if ReadHash == WriteHash then

there is no error

T = NewT
else

there is error detected

end if

}

www.manaraa.com

98

Main Memory

①

②

③
④

⑤
⑥

Write memory and
update WriteHash

Update
WriteHash

Write cache and
update ReadHash

Update
ReadHash

Last-Level Cache

Figure 6.1: Memory operations for memory error detection.

at this time. If a memory page is loaded during program execution because of page fault, all

blocks of the faulted page will be logged into WriteHash. We assume that there is a special

DMA mode for program loading, which triggers the update of WriteHash at the memory

controller. Normal memory accesses during OS kernel execution are not logged. This step is

shown as 1© in Figure 6.1.

When the program is running, the memory controller enters a logging mode (set by the

OS). The read block operation is executed at the memory controller when a last-level cache

miss triggers a memory read. The (address, data) pair of the memory block is logged into

ReadHash, shown as 2© and 4© in Figure 6.1. If a memory block is loaded into cache for

the first time after program loading, the read will match the write to the same memory block

address at the time of program loading.

For each cache replacement (eviction), the write block operation is executed to log a

memory write in WriteHash. Note that an actual memory write happens only when the

replaced block is dirty; however, even if the replaced block is clean, the eviction is treated as

a (artificial) write and is logged in WriteHash. The purpose is to ensure the same set of

(address, data) pairs will be logged in ReadHash and WriteHash: if the evicted block is

loaded to cache again, the read will match the logged write at the time of eviction (assuming

no error happens between the eviction and the load), no matter whether an actual memory

write happened or not then. Figure 6.1 3© and 5© shows the write block operation for clean

and dirty block, respectively.

At the end of program execution or during periodical memory error checking, the integrity

www.manaraa.com

99

check operation is executed as shown in Figure 6.1 as 6©. For each physical memory block

used by the program, the OS checks if the block is cached or not. If it is not cached, the OS

requests the memory controller to load the memory block and log the (address, data) pair in

ReadHash. Again, this is to ensure that the same set of (address, data) pairs will be logged

in ReadHash and WriteHash: for every memory block not cached at this time, there is an

(address, data) pair that has been logged in WriteHash but not in ReadHash. This step

effectively synchronizes ReadHash and WriteHash. Then, if ReadHash and WriteHash

match, the OS determines that no memory error has happened. Otherwise, it determines an er-

ror has happened and will trigger checkpoint recovery. Note that in this step, integrity check

creates a new WriteHash and adds all the uncached blocks into the new WriteHash when

they are added to ReadHash. If no error occurred, the new WriteHash will replace the old

WriteHash and ReadHash is cleared so that a new checking period starts. In addition, we

assume that the memory controller is in a special mode, in which it does not log the normal

memory accesses from the OS. We also assume that in this mode the OS may write a memory

block address to a memory-mapped register of the memory controller to trigger an update of

ReadHash.

MemGuard does not use per-block timestamp as in the study on secure processor design [99].

The purpose of using timestamp is to prevent replay attack from an adversary, which is very

unlikely in a normal system. Assume that an error occurs in memory and changes the value of a

memory block of block address A and value X. During program loading, (A, X) will be logged

in WriteHash. When the block is loaded into cache, (A, X ′) is logged into ReadHash, which

does not match the logged write. To form an error like one from a replay attack, the program

execution may have to generate a write of (A, X ′) at a later time, and then another memory

error shall happen to change the block’s value back to X.

6.3.3 Reliability Analysis

MemGuard compares ReadHash and WriteHash to decide if a memory error occurs

in a sequence of N accesses. A hash collision happens if a memory error has happened but

ReadHash matches WriteHash. The probability of hash collision is the probability of false

www.manaraa.com

100

negative of memory error detection. The study of MSet-Add-Hash [4] defines that two result

hashes are equivalent if the modulus sums of the hashed values by hash function Hs are the

same. In other words, if the modulus sum of hashes for each read request is equivalent to that

of write request, there is a collision if error occurred in one or more of those accesses. Given

that the collision rate is 1
2m for a strong m-bit hash function and assume i out of N requests

have errors, the probability of collision is given by Formula (6.4) given that the hash result for

each access is in the range of 2m:

P (i) = (
1

2m
)i + (

1

2m
)i−1(1− 1

2m
) + · · ·+ 1

2m
(1− 1

2m
)i−1 (6.4)

Let p0, pd and pw denote the probabilities of no error, detectable error and undetectable

error in one data block for conventional error protection scheme, respectively. The probability

that i out of N accesses have error is Ci
N (pd +pw)i(1−pd−pw)N−i. Combining Equation (6.4),

we thus have the collision rate for MemGuard design, represented by

FMemGuard =
N∑
i=1

P (i) · Ci
N (pd + pw)i(1− pd − pw)N−i (6.5)

For conventional error protection scheme, it fails as long as an undetectable error occurred to

one of the N requests. Therefore, the failure rate for conventional error protection is given by

Fconventional = 1− (1− pw)N (6.6)

Based on Formulas (6.5) and (6.6), we build a simple model to compare the error detection

capability of MemGuard design with the conventional SECDED protection. Assume the prob-

ability that any one bit error occurs to a data block with nb bits is p in a time period t. Then,

p0 = (1− p)nb denotes the probability of no error in the data block. The probability of having

an exact one-bit error is denoted as p1 = nbp(1 − p)nb−1. The probability for two-bit error is

denoted as p2 = C2
nb
p2(1 − p)nb−2. As SECDED detects up to two-bit error, the detectable

error rate for SECDED is thus approximately1 pd = p1 + p2; and the undetectable error rate is

pw = 1− p0 − p1 − p2.
1SECDED can detect three and more bits of errors with certain probabilities. The exact probability is

evaluated by Monte Carlo simulation in Section 6.5.

www.manaraa.com

101

With error rate of 25,000∼70,000 FIT/Mbit from study [92], we compare failure rate

FMemGuard with Fconventional. The results are presented in Section 6.5.1.1. In general, Mem-

Guard has much higher error detection rate than SECDED in all the cases we studied. Addi-

tionally, as the time period t grows, the undetectable error rate for SECDED grows but that for

MemGuard does not increase. Furthermore, because the collision rate for a strong hash func-

tion is irrelevant with number of bits flipped in data, MemGuard design has better tolerance

for multi-bit errors.

6.3.4 Selection of Hash Function

In MemGuard, a hash function Hs is used to convert the (address, data) pair of a memory

request to a hash value before the multiset hash function is used. Hash functions are generally

classified as cryptographic ones and non-cryptographic ones. Cryptographic hash functions are

applied in secure applications and systems, i.e. MD4 [85], MD5 [86], SHA1 [46], SHA2 [30], etc.,

to protect the system from resourceful and malicious adversaries. They are typically complex

in computation and have a low throughput. For example, MD5 generates a 128-bit hash code

by four rounds of computation with 16 operations in each round. To the best of our knowledge,

the best FPGA and ASIC implementation report 0.73GB/s and 0.26GB/s throughput with cost

of 11,498 logic slices and 17,764 logic gates [41, 89], respectively. SHA1 is more complicated,

requiring four rounds of 20 operations each to generate a 160-bit hash code.

Memory error is completely disparate from the intentional malicious attacks. It is caused

by stochastic and unskilled cosmic rays, alpha particles and others. Therefore, simple and

cost effective non-cryptographic hash functions can be adopted in MemGuard. There exist

multiple non-cryptographic hash functions, for example Pearson Hashing [79], Fowler-Noll-

Vo(FNV) [23], CRC [81], MurmurHash [5], lookup3 [42], SpookyHash [43], CityHash [26] and

others. We still have to make a careful selection for performance and power efficiency.

Above all, the hash function should be collision resistant to provide a strong capability

of error detection. A strong hash function with m-bit output has a collision rate of 1/2m if

we assume the function produces each hash value with exactly the same probability. With

birthday attack, the rate increases to around 1/2
m
2 . Therefore, the selected hash function

www.manaraa.com

102

should be able to create output with a decent length. The original Pearson hashing algorithm

generates only 8-bit output, which cannot be adopted in this design. Second, the output hash

values need to follow uniform distribution independent of the distribution of inputs. Otherwise,

it will introduce clustering problem which can result in high collision rate. Third, a good hash

function is required to have a good level of avalanche effect. Avalanche effect presents the

ability for a hash function to produce a large change in output bits upon a minor modification

to input bits. The avalanche effect thus can dissipate minor modification in input data to a large

structure of output bits, which enhances error detection capability. Previous studies [20, 43]

present that lookup3 Hash, SpookyHash, MurmurHash and CityHash all have good properties

in avalanche effect.

In addition, the required hash function should be non-linear. Linear in this context means

Hs(A + B) = Hs(A) + Hs(B) mathematically, where A and B are two inputs, and + can

be general addition operation or binary xor operation. The reason is that it can introduce

high collision when apply to MSet-Add-Hash. Following Formula (6.1), the hash values of two

tampered data can cancel the modification out with a high possibility if the hash function

is linear. For example, given two data A and B, assume there is single bit error to both of

these data at the same bit position. Using A′ and B′ to denote the tampered data, we have

A + B = A′ + B′. Therefore, Hs(A
′) + Hs(B

′) = Hs(A) + Hs(B) even if a single-bit error in

data A and B creates great changes in their hash values, given a linear hash function. Thus,

CRC hash function can not be applied as CRC(A⊕B) = CRC(A)⊕ CRC(B).

Based on the criteria required, we opt for SpookyHash designed by Jenkins in 2011 [43].

SpookyHash produces well distributed 128-bit hash values for variable length of input. It has

been tested by the author for collision up to 272 key pairs, which presents a good collision

resistance. SpookyHash is said to achieve avalanches for 1-bit and 2-bit inputs which means

that any 1-bit or 2-bit change in inputs results in a flip in each output bit with 1/2 possibility.

In addition, SpookyHash is simple and fast and it costs merely 64-bit addition, xor and rotation

operations. SpookyHash classifies keys as short if the length of input is less than 192 bytes

and thus computes hash code with a simpler function. In MemGuard design, we combine each

64-byte data block with its address as an input key. The address is assumed to be 8 bytes

www.manaraa.com

103

with paddings to make a sufficiently large space. The input key size is thus 72 bytes, which is

regarded as short by SpookyHash.

The cost of SpookyHash compared to DDR3 main memory is minimal. We first carefully

scrutinize SpookyHash function and observe that it takes 45 64-bit addition operations, 35 xor

and 35 rotation operations to do the hashing. A previous study [66] presents that the energy

consumption of a 64-bit adder with 65nm process is 8.2 pJ. Using this number, we calculate

that SpookyHash consumes less than 1.0 nJ for each hashing operation. On the other hand,

DDR3 memory power calculation is well established by Micron [70]. A complete memory access

cycle includes precharge, activation, I/O drive and termination, and data transfer operations.

In addition, there is consecutive background power consumption and it is increasing as the

number of DRAM devices in a system grows. Taking Micron MT41J256M8 [69] device as

an example, an eight x8 DIMM can consume 62.0 nJ energy for a complete memory access

cycle. The energy consumption of a real system can be higher as it conventionally comprises

multiple channels with multiple DIMMs per channel. Therefore, the energy consumption for

SpookyHash is almost negligible compared to that of the DRAM access.

6.3.5 Checkpointing Mechanism for Error Recovery

In MemGuard design, errors in the program can be efficiently detected. We turn to OS-

based checkpointing mechanism for error recovery. Checkpointing method has been studied for

decades [57, 82, 88, 53, 74] and most recent studies [49, 120, 21] discuss checkpointing recovery

scheme for failures in high performance computings (HPC). In general, checkpointing takes the

snapshot of entire state of a program at the moment it was taken. It thus maintains all the

necessary information for a process to restart from the checkpoint.

Upon an error, checkpoint recovery is initiated and the program is rolled back to the most

recent checkpoint. The program state is overwritten with the stored checkpoint state. In this

case, the computation back to the checkpoint is discarded and the system pays the performance

overhead for error recovery. The more frequent the checkpoints are taken, the less the rollback

overhead. However, checkpointing itself introduces penalty as it requires time and storage

to generate the checkpoints. Book [53] presents an analytical model of checkpointing and

www.manaraa.com

104

discusses in detail of checkpointing placement issue and its optimization. As a memory error

is an uncommon event, failure recovery is rarely called.

In MemGuard, the checkpointing frequency is lower than that of error checking frequency

as there is at least one error checking before checkpointing. There can be multiple memory

error checking in between two neighbor checkpoints to detect errors timely. Otherwise, the

system rollback overhead is high as error detection is delayed. In case of an error, the system is

rolled back to a most recent checkpoint. If error still exists, the OS can improve checkpointing

and integrity checking frequency to exactly capture errors in a shortened period. For repeating

failures, a system reconfiguration is required as it is highly possible to be a hard error.

6.3.6 Integrity-Check Optimization and Other Discussions

The integrity check step in Algorithm 2 requires to scan the entire memory space ever

allocated to the process if the data block is not presented in cache. Although integrity check

period can be prolonged and it will not affect reliability much, the checking frequency may be

limited by practical requirement, i.e. error detection is required before each checkpointing. In

such cases, integrity check can introduce visible overhead if the allocated memory space is

significantly large. We further propose lazy-scan or also called touched-only scan scheme to

reduce the scan overhead. The lazy-scan scheme only fetches pages that have been touched

during an integrity checking period instead of all the pages allocated to the process. Typically,

the required memory space is allocated at very beginning while merely part of them is touched

during a period. Therefore, a lazy-scan will significantly reduce the memory traffic. Current

processors can already provide the information to the OS.

In order to guarantee that all the allocated memory pages will be added into ReadHash

for hash comparison, the hashes of all the untouched pages are still required. We thus propose

to maintain a 128-bit (16-byte) sum hash for each memory page. In integrity check step,

hashes for untouched pages are added into ReadHash directly and hashes for touched pages

are calculated based on the fetched data blocks from main memory. A 128-bit hash can be

applied for each page or a group of pages to reduce the cost with penalty of possibly increased

touched page size. The lazy-scan scheme has an additional advantage that it only detects

www.manaraa.com

105

Real Machine Configuration

Processor Intel Xeon E5520 Quadcore 2.26GHz

OS kernel Linux 2.6.27.6-117.fc10.x86 64

Compiler GCC 4.6.2

L1 caches (per core) 32KB Inst/32KB Data, 8-way, 64B line

L2 caches (per core) 256KB unified, 8-way, 64B line

L3 cache (shared) 8MB, 8-way, 64B line

Memory DDR3-1066 2DIMMs with 2GB/DIMM

Marss Simulator Configuration

Processor 1 ooo core, 4GHz,14-stage pipeline

Functional units 2 IntALU, 4 LSU, 2 FPALU

IQ, ROB and LSQ IQ 32, ROB 128, LQ 48, SQ 44

Physical registers 128 Int, 128 FP, 128 BR, 128 ST

L1 caches (per core) 64KB Inst/64KB Data, 2-way, 16B line

L2 cache (shared) 8MB, 8-way, 64B line

Memory 4GB, 200 cycles latency

Table 6.1: Major configuration parameters.

errors in program correction related pages and the untouched pages are assumed to be correct

as they are not read from main memory again. This can reduce program recovery rate as OS

may allocate a large memory space for some applications while the actually used is small. For

example, 434.zeusmp from SPEC CPU2006 allocates 1131MB of virtual memory but only uses

502MB in its lifetime following our experiment in Section 6.5.

In practice, MemGuard can be applied in combination with an SECDED scheme as single-

bit errors are most common. In this case, all single-bit errors can be corrected by SECDED

and it reduces the overhead for checkpointing rollback recovery caused by single-bit errors.

For example, high-performance computing servers can both adopt SECDED and MemGuard

design to avoid most common single-bit errors and detect multiple-bit errors. With MemGuard

design, it saves the computation overhead as errors can be efficiently detected. For consumer

level computers and mobile systems without ECC, MemGuard design can be employed to

efficiently provide error protection.

www.manaraa.com

106

6.4 Experimental Methodologies

We build a memory request generator to generate synthetic traces of memory write and

read for reliability evaluation. A configurable error injector is built to inject specific errors into

the memory traces to evaluate the error detection capability of proposed MemGuard scheme

and conventional SECDED design. SECDED is implemented following the reference design

RD1025 [93] from Lattice Semiconductor and SpookyHash function is implemented using open

source code [43]. To evaluate SECDED, we inject specific error types into each memory request

and use SECDED to detect the error. The experiment is repeated by 1 billion times and then

the error detection ratio is reported. For MemGuard, we generate 1 and 10 billion memory

requests and inject specific errors to evaluate MemGuard error detection probability. The

experiment is repeated for 100 times and the average error detection ratio is reported.

In order to evaluate system performance overhead introduced by MemGuard design, par-

ticularly from the integrity check step, we run all 26 compilable benchmarks from SPEC

CPU2006 suite [98] with different input-sets till the end on a real machine. The machine uses

an Intel Xeon E5520 2.26GHz processor of 8MB last level cache and 4GB main memory. The

detailed configuration is described in Table 6.1. We follow the study [29] to collect virtual and

physical memory sizes for the total 51 benchmark-input sets to estimate memory scan overhead.

In addition, we use a full system simulator Marss-x86 [78] to further study the introduced

memory traffic by MemGuard. Marss is an x86-64 architecture based cycle accurate simulator

and its detailed configuration is also listed in Table 6.1. We run 26 benchmark-input sets on

Marss for 10 billion instructions to collect memory traffic for baseline machine and estimate

extra memory traffic caused by MemGuard.

6.5 Experimental Results

6.5.1 Reliability Study

We study error detection capability of MemGuard design and SECDED from two aspects.

The analytical results are based on our error model and mathematical deduction presented in

Section 6.3.3 while simulated results rely on synthetic memory traces and error injection.

www.manaraa.com

107

-45.0
-40.0
-35.0
-30.0
-25.0
-20.0
-15.0
-10.0

-5.0
0.0

F_
M

em
G

u
ar

d

F_
SE

C
D

ED

F_
M

em
G

u
ar

d

F_
SE

C
D

ED

F_
M

em
G

u
ar

d

F_
SE

C
D

ED

F_
M

em
G

u
ar

d

F_
SE

C
D

ED

Ns=s1sbillion Ns=s10sbillion Ns=s100sbillion Ns=s1000sbillion

Lo
g

b
as

e
d

 u
n

d
et

ec
ti

o
n

 r
at

e
t=1ss(FIT=25000)

t=1ss(FIT=70000)

t=10ss(FIT=25000)

t=10ss(FIT=70000)

t=100ss(FIT=25000)

t=100ss(FIT=70000)

t=1000ss(FIT=25000)

t=1000ss(FIT=70000)

Figure 6.2: Error detection failure rate comparison of MemGuard and SECDED. The higher

the bar the lower the error un-detectable rate.

6.5.1.1 Analytical Error Detection Rate

We calculate the error detection capability of MemGuard and SECDED design following

the analytical model discussed in Section 6.3.3 for 25,000 and 70,000 FIT, respectively. In the

calculation, we vary the time period t from 1 to 1,000 seconds and number of requests N from

1 to 1,000 billion. Figure 6.2 presents the results. The y-axis is reversed log-based to make the

figure readable and thus the higher the bar the lower the error un-detectable rate.

It is obvious that for all these cases, our proposed MemGuard design is orders of magnitude

stronger than conventional SECDED in error detection capability. The reason is that the strong

hash function presents a low collision rate of 1
2128

. With the number of requests in a checking

period grows, the error detection capability decreases slightly due to possibly increased collision

by addition operation. However, the error detection rate is mainly decided by collision rate

of the selected hash and the decrease is gradually attenuated. Therefore, the error checking

frequency of MemGuard design can be prolonged almost arbitrarily without much loss of re-

liability. As SECDED protection detects error in each request, its error detection rate almost

keeps constant in this case.

As the time period t grows from 1 to 1,000 seconds, error rate for each bit in a data

block grows, which increases multi-bit (> 2) error rate. Therefore, SECDED error detection

www.manaraa.com

108

9
9

.2
%

9
9

.2
%

9
9

.2
%

9
9

.2
%

4
8

.5
%

5
0

.1
%

5
0

.0
%

5
0

.0
%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1-bit 2-bit 3-bit 4-bit 5-bit 6-bit 7-bit 8-bit 9-bit 10-bit

P
ro

b
ab

ili
ty

Injected memory error types

SECDEDyreportedyerrorydetectionyrate

Propabilityytoybeyrecognizedyasysingle-bityerror

Figure 6.3: SECDED error protection capability. Note that although SECDED can fully report

that error occurs for odd-bit (>1) errors, it might mistakenly recognize them as single-bit errors

and correct them incorrectly.

capability is reduced significantly. However, in MemGuard, it employs strong hash function of

which the collision rate is irrelevant with number of flips in a data block. As the error rate for

each data block grows, error detection capability reduces slightly for MemGuard design since

the number of tampered data blocks increases and thus the collision possibility. However, the

decreasing rate is lower than that of SECDED.

We do not present results data for Chipkill Correct as the computation exceeds the precision.

However, we expect that MemGuard design can be stronger than Chipkill Correct. The reason

is that the error detection capability of Chipkill Correct is closely related to multi-bit error rate

while MemGuard design is not. As errors are usually correlated in real world [33], undetectable

error rate can be high and Chipkill Correct may fail. As MemGuard design is highly correlated

to the reliability of hash function itself, it can be more reliable than Chipkill Correct in error

detection given that a strong hash function is carefully selected.

6.5.1.2 Simulated Error Detection Rate

For SECDED protection, we inject 1 to 10 bits of errors to a 64-bit data block at random

positions and apply SECDED to detect the error. The experiment is repeated for a billion

times to report error detection rate. Figure 6.3 presents the results. SECDED can completely

detect all single- and double- bit errors as it has a Hamming distance of 4. In addition, the

www.manaraa.com

109

E
jE
3 E
jE

E
jE
7

E
jE

E
jE
7

E
jE

E
jE
7

E
jE
7

E
jE
7

E
jE
8

E
jE

E
jE
5

E
jE
5

E
jE
5

E
jE
5

E
jE

E
jE
2

E
jE
2

E
jE
4

E
jE
3

E
jE
5

E
jE
4

E
jE
5

E
jE

E
jE
7

E
jE
E E
jE
E

E
jE
E

E
jE
E

E
jE
E

E
jE
E

E
jE
E

E
jE
E

E
jE

E
jE
E E
jE
E

E
jE
3

E
jE

E
jE

E
j
4

E
jE
6 E
jE
E

E
jE

E
jE
E

E
jE

E
jE

E
jE
5

E
jE
E

E
jE
E

E
jE
3

E
jE
9

E
jE
3

E

2EE

4EE

6EE

8EE

 EEE

 2EE

 4EE

 6EE

 8EE

as
ta
rj
b
ig
la
ke
s

as
ta
rj
ri
ve
rs

b
w
av
es

b
zi
p
2j
ch
ic
ke
n

b
zi
p
2
jc
o
m
b
in
ed

b
zi
p
2
jli
b
er
ty

b
zi
p
2j
p
ro
gr
am

b
zi
p
2j
so
u
rc
e

b
zi
p
2
jt
e
xt

ca
ct
u
sA
D
M

ca
lc
u
lix

d
ea
lII

ga
m
es
sj
cy
to
si
n
e

ga
m
es
sj
h
2o

cu

ga
m
e
ss
jt
ri
az
o
liu
m
jc
o
n
…

gc
cj

6
6

gc
cj
2E
E

gc
cj
cp
d
ec
l

gc
cj
ct
yp
e
ck

gc
cj
ex
p
r

gc
cj
ex
p
r2

gc
cj
g2
3

gc
cj
sE
4

gc
cj
sc
ila
b

G
em

sF
D
TD

go
b
m
kj
 3
x
3

go
b
m
kj
n
n
gs

go
b
m
kj
sc
o
re
2

go
b
m
kj
tr
ev
o
rc
jt
st

go
b
m
kj
tr
ev
o
rd
jt
st

gr
o
m
ac
s

h
2
64
re
fj
re
f_
b
as
el
in
e

h
2
64
re
fj
re
f_
m
ai
n

h
2
6
4
re
fj
ss
s_
m
ai
n

h
m
m
er
jn
p
h
3

h
m
m
er
jr
et
ro

lb
m

le
sl
ie
3
d

lib
q
u
an
tu
m

m
cf

m
ilc

n
am

d

o
m
n
et
p
p

p
o
vr
ay

sj
en

g

so
p
le
xj
p
d
s

so
p
le
xj
re
f

sp
h
in
x3

to
n
to

xa
la
n
cb
m
k

ze
u
sm

p

A
V
G

ti
m

e
 (

se
co

n
d

s)
Estimatedymemoryyscanytime

Estimatedyexecutionytimeytillytheyend

(a) SPEC CPU2006 total execution time with memory scan overhead.

V
3

V
1

V
7

V
1

V
7

V
1

V
7

V
7

V
7

V
8

V
1

V
5

V
5

V
5

V
5

V
1

V
2

V
2

V
4

V
3

V
5

V
4

V
5

V
1

V
7

V

V

V

V

V

V

V

V

V
1

V

V

V
3

V
1

V
1

V1
4

V
6

V

V
1

V

V
1

V
1

V
5

V

V

V
3

V
9

V
3

5

1

15

2

25

3

35

4

45

as
ta
rV
b
ig
la
ke
s

as
ta
rV
ri
ve
rs

b
w
av
es

b
zi
p
2V
ch
ic
ke
n

b
zi
p
2V
co
m
b
in
ed

b
zi
p
2V
lib
er
ty

b
zi
p
2V
p
ro
gr
am

b
zi
p
2V
so
u
rc
e

b
zi
p
2V
te
xt

ca
ct
u
sA
D
M

ca
lc
u
lix

d
ea
lII

ga
m
es
sV
cy
to
si
n
e

ga
m
es
sV
h
2o

cu

ga
m
es
sV
tr
ia
zo
liu
m
Vc
o
n
fi
g

gc
cV
16
6

gc
cV
2

gc
cV
cp
d
ec
l

gc
cV
ct
yp
ec
k

gc
cV
ex
p
r

gc
cV
ex
p
r2

gc
cV
g2
3

gc
cV
s
4

gc
cV
sc
ila
b

G
em

sF
D
TD

go
b
m
kV
1
3
x1
3

go
b
m
kV
n
n
gs

go
b
m
kV
sc
o
re
2

go
b
m
kV
tr
ev
o
rc
Vt
st

go
b
m
kV
tr
e
vo
rd
Vt
st

gr
o
m
ac
s

h
2
6
4
re
fV
re
f_
b
as
el
in
e

h
2
6
4
re
fV
re
f_
m
ai
n

h
2
64
re
fV
ss
s_
m
ai
n

h
m
m
er
Vn
p
h
3

h
m
m
er
Vr
et
ro

lb
m

le
sl
ie
3
d

lib
q
u
an
tu
m

m
cf

m
ilc

n
am

d

o
m
n
et
p
p

p
o
vr
ay

sj
en

g

so
p
le
xV
p
d
s

so
p
le
xV
re
f

sp
h
in
x3

to
n
to

xa
la
n
cb
m
k

ze
u
sm

p

A
V
G

ti
m

e
(s

ec
o

n
d

s)

Estimatedymemoryyscanytime

Estimatedyaverageyexecutionytimeyofy1 ybillionyinstructions

(b) SPEC CPU2006 execution time for 10 billion instructions with memory scan overhead.

Figure 6.4: Memory integrity-checking overhead of SPEC CPU2006 benchmark-input sets.

implemented SECDED code can detect all odd-bit errors similar to parity checking, which

counts the total number of ‘0’s or ‘1’s in the data. Any odd-bit flip will modify the even/odd

parity bit which can be detected. In theory, SECDED code cannot correct any errors with

more than one bits flipped. The particular SECDED implementation reports if error occurred.

If so, it simply identifies it is single-bit error or double-bit error no matter how many bits

flipped in the data block. For odd-bit (except 1-bit) errors, they will be mistakenly recognized

as double-bit errors with a 50% chance and the other 50% chance to be mistakenly recognized

as single-bit errors and corrected by SECDED incorrectly. In addition, SECDED can not fully

detect other even number of bits errors. The error detection rate is around 99.2% and all of

them are mistakenly recognized as double-bit errors by implemented SECDED.

For MemGuard design, we inject one, two, three, four, five, ten, 100 and 1000 errors into

1 billion and 10 billion memory requests, separately. We group errors into six categories:

single-, double-, triple-, quad-, multi- (randomly generated > 4) bit and mixed (of these five)

www.manaraa.com

110

errors. The experiment is repeated for 100 times. We did not present the result figure as

MemGuard design yields 100% error detection rate across all of our experiments. In reality,

the probability of error detection is not 100% but is too high for a false negative to be observed

in the experiments. Although the repeat times are limited to 100, we believe the results

are representative as SpookyHash itself performs great in collision resistance (passing through

272 ≈ 1021 key pair test by the author).

The high reliability of MemGuard in memory error detection comes from the applied hash

function. As illustrated, MemGuard design with SpookyHash is stronger than conventional

SECDED error protection. A hash function with higher collision resistance can further improve

its reliability. Given that Chipkill Correct may fail when multi-bit error rate is high, MemGuard

design can be stronger than Chipkill Correct in error detection, and it is designed to be irrelevant

to number of flips in a data block.

6.5.2 System Performance Study

In MemGuard design, the major overhead to system performance is to scan allocated mem-

ory space during integrity check. We thus estimate memory scan overhead and compare it to

the program execution time. We run all the executable benchmark-input sets on a real machine

to obtain the program execution time and collect the allocated virtual memory space following

a previous study [29] to estimate memory scan latency. As memory scanning has great page

locality, we assume that each 64-byte memory block takes 5ns for DDR3-1600 DRAM memory.

Figure 6.4 describes the results. Assume memory integrity checking is executed solely at

the end of a program, the scan overhead is minimal. As illustrated in Figure 6.4a, the program

execution time is orders of magnitude higher than memory scan time. On average, the program

execution time is 418 seconds while memory scan takes merely 0.03 seconds given that the

virtual memory space allocated is 372MB on average. In practice, the low integrity checking

frequency can increase checkpointing recovery overhead as errors are delayed to detect. We

thus assume the checking is activated every 10 billion instructions and Figure 6.4b presents

the results. For SPEC 2006 benchmarks, the average execution time is 4.35 seconds for 10

billion instructions and memory scan overhead keeps unchanged, which is approximately 0.7%

www.manaraa.com

111

0
E0

0
2

0
E0

0
8

0
E0

1
3

0
E0

2
4

0
E0

5
9

0
E0

6
4

0
E0

9
4

0
E1

8
0

0
E3

0
9

0
E3

5
7

0
E5

4
0

0
E5

4
3

0
E5

5
2

1
E5

1
9

3
E2

5
9

3
E7

7
9

3
E9

1
2

6
E2

8
8

1
0

E3
7

5

1
8

E1
2

9

2
0

E4
0

8

2
5

E5
2

4

2
5

E8
8

7

3
0

E6
5

9

3
6

E4
8

4
1

p
o

vr
ay

ga
m

es
sE

cy
to

si
n

e

to
n

to

h
2

64
re

fE
b

as
el

in
e

b
zi

p
2E

in
p

u
t

n
am

d

gr
o

m
ac

s

h
m

m
er

En
p

h
3

ca
lc

u
lix

o
m

n
et

p
p

sj
en

g

go
b

m
kE

13
x1

3

xa
la

n
cb

m
k

gc
c

as
ta

rE
b

ig
La

ke

ca
ct

u
sA

D
M

sp
h

in
x3

ze
u

sm
p

so
p

le
xE

p
d

s

b
w

av
es

le
sl

ie
3

d

lb
m

m
ilc

ge
m

sF
D

TD m
cf

lib
q

u
an

tu
m

ILP MED MEM

memorydaccesdperd1000dinstructions

Figure 6.5: SPEC 2006 memory traffic characterizations.

povr
ay

gam
ess0c
ytosi
ne

tont
o

h96S
ref0b
aseli
ne

bzip
90inp
ut

nam
d

gro
mac

s

hm
mer0
nph
R

calc
ulix

omn
etpp

sjen
g

gob
mk08
Rx8R

xala
ncb
mk

ILP
AVG

gcc
astar
0bigL
ake

cact
usA
DM

sphi
nxR

zeus
mp

MED

AVG

sopl
ex0p
ds

bwa
ves

lesli
eRd

lbm milc
gem
sFDT

D
mcf

libqu
antu
m

ME
M
AVG

ILP MED MEM

touchedLblockLsize 807 Z08 708 870Z RS0R 870S 8Z0S 8Z07 ZS08 87R0 870Z 990S 8770 R708 SR08 9708 S8R0 8R08 S790 89S 8908 8770 7Z08 S7R0 8870 8790 877Z 6608 Z96

touchedLpageLsize S0S 806 8906 8S07 R60Z 970R 8806 880S Z709 8780 87Z0 R908 87S0 S708 S70S 970Z S8Z0 980S S8S0 899 9908 8870 8709 S760 R780 8780 8778 6806 ZZ9

RSS S06 60Z RS06 9708 8S90 S609 8S07 9Z09 8870 8690 87Z0 9808 R970 8R90 9RZ0 R9Z0 69R0 S907 Z790 RS6 89R0 87R0 89R0 S790 6790 8980 8676 6S07 Z97

VSZ 8Z07 6Z80 Z707 RR07 8Z60 Z606 9907 R807 87S0 8790 8780 RZ09 RR90 9780 9S90 RS80 8789 Z706 88R8 ZZ6 8ZR0 8860 8RZ0 S8Z0 6990 8S80 8689 770S 687

7

R77

677

977

8977

8Z77

8877

M
e

m
o

ry
 s

iz
e

 (
M

B
)

touchedLblockLsize touchedLpageLsize RSS VSZ

Figure 6.6: Comparison of touched memory blocks, touched memory pages in 10 billion in-

structions and used physical memory space and allocated virtual memory space during its

lifetime.

of the execution time. Therefore, as long as the integrity checking rate is greater than 10 billion

instructions, the system performance overhead is negligible.

In the case that the application has a large memory footprint and integrity checking fre-

quency is required to be high by practice, lazy-scan scheme can help reduce scan overhead as

only the touched pages are required to read from main memory. As the checking period is

short, the touched page size is comparatively small. lazy-scan will significantly save the cost

and we can see the results from next section.

6.5.3 Memory Traffic Overhead

We assume that the memory error checking frequency is every 10 billion instructions to

study memory traffic overhead and proposed lazy-scan scheme. We first use the Marss-x86

www.manaraa.com

112

povra
y

game
ss9cyt
osine

tonto

hR6Z
ref9b
aselin
e

bzipR
9inpu
t

namd
grom
acs

hmm
er9np
hS

calcul
ix

omne
tpp

sjeng
gobm
k95Sx
5S

xalan
cbmk

ILP0
AVG

gcc
astar9
bigLa
ke

cactu
sAD
M

sphin
xS

zeus
mp

MED0
AVG

sople
x9pds

bwav
es

leslie
Sd

lbm milc
gems
FDTD

mcf
libqu
antu
m

MEM
0AVG

ILP MED MEM

blocks 89888 89888 89888 89569 897R7 89RZS 895S8 89878 89RZ8 89ZS7 89RZ5 89865 89R7Z 89R88 898S8 89886 89576 8988R 895RS 89869 8985S 89879 89885 898R5 89855 898ZR 89876 8988R 898SR

pages 89888 89555 89585 89Z89 89788 89S57 89586 89895 89R6Z 89Z6R 89587 89875 89R87 89S5Z 898ZR 89858 89577 89886 895RZ 8987R 8985S 89879 89886 898R6 898RS 898ZS 89876 8988R 898SZ

RSS 89888 89888 S9S7Z 59S89 RS9R6 8998Z 89585 89557 89585 897S9 89587 89865 899R5 R9Z6R 89RZ6 89568 89R67 89855 895R9 8956S 89858 89878 89889 898R6 898ZS 898ZZ 89875 8988R 898S7

VSZ 79598 5R798 59SRS 59765 RS9Z6 59R5R 89S79 89R58 8988R 89785 89558 8988R 8996S 5S986 89R5S 89568 89ZS6 89858 89R9S 89RSS 898RS 89879 89858 898R6 898ZS 898Z5 89875 8988R 898S8

89888
89R88
89Z88
89688
89888
59888
59R88
59Z88
59688
59888
R9888

M
e

m
o

ry
 s

ca
n

 t
ra

ff
ic

 o
ve

rh
e

ad blocks pages RSS VSZ

Figure 6.7: MemGuard introduced memory traffic overhead by integrity checking.

simulator to characterize memory traffic of each SPEC 2006 benchmark without error pro-

tection. We group the benchmarks into three categories: ILP (computation-intensive), MED

(medium) and MEM (memory-intensive) based on MPKI. We define MPKI as memory accesses

per 1,000 instructions and ILP benchmarks are those with MPKI less than 1.0. MEM are those

that MPKI is greater than 10.0 and MED are those in between the two. Figure 6.5 presents

the results. Typically, MEM benchmarks are memory power hungry as they access memory

frequently and consume significant operation power, read/write power and IO power.

Figure 6.6 compares the actually touched memory pages in 10 billion instructions, the used

physical memory space (RSS: resident set size) and allocated memory space (VSZ: virtual

memory size) during its entire lifetime. The physical and virtual memory spaces are mostly

consistent with several large exceptions, i.e. gamess, zeusmp, etc. For gamess with cytosine

workload, it allocates 651 MB virtual memory and the actual physical memory usage is merely

6.5MB. In addition, across all the benchmarks, the actually touched pages are smaller than total

allocated memory space. The reduction is from 201.9MB for VSZ to 47.1MB, from 555.8MB

to 199.3MB and from 609.8MB to 552.1MB on average for ILP, MED and MEM, respectively.

Therefore, lazy-scan can effectively reduce memory traffic overhead.

Figure 6.7 presents the introduced memory traffic of MemGuard design. We limit the y-

axis less than 2.0 to make the figure readable and table all data in case it is out of range.

For ILP workloads, MemGuard design will introduce 13x memory traffic on average if entire

VSZ is scanned. By scanning RSS and touched pages, the overhead is reduced to 2x and 31%,

www.manaraa.com

113

respectively. As ILP workloads are computation intensive, their memory power consumption is

not significant. For MEM workloads, the extra memory traffic is 3.8% and 3.7%, respectively,

by scanning VSZ and RSS. The cost is further reduced to 3.4% if lazy-scan is applied. This

cost is less than conventional SECDED design, which introduces 12.5% overhead. As memory

scanning presents a good amount of page localities, the practical power consumption can be

lower than traffic overhead. For MED workloads, the overhead is 23.3% by scanning VSZ and

it can be reduced to 7.2% by lazy-scan. The overhead is also lower than conventional SECDED

design. Note that the reported overhead from MemGuard is based on the assumption that

the error checking is executed every 10 billion instructions. The checking period can be much

longer than that, which will further reduce the overhead.

The figure also compares the actually touched memory data blocks with touched memory

pages. On average, the introduced memory traffic can be reduced from 31% to 20%, from

7.2% to 6.9% and from 3.4% to 3.2% for ILP, MED and MEM workloads, respectively. By

scanning touched blocks instead of touched pages, the overhead can be further reduced. Also,

as discussed previously, scanning RSS can reduce the overhead compared to scanning VSZ.

6.6 Summary

We have presented MemGuard, a system level error protection scheme for main memory

system. The scheme is independent of DRAM organizations and isolated in memory system

level. Based on WriteHash and ReadHash comparison, the scheme can effectively detect

errors in a sequence of memory requests. A detailed analysis of reliability capability and

selection of hash functions are presented. The evaluation using mathematical deduction and

synthetic simulation proves that MemGuard design is more reliable than conventional SECDED

design with lower performance and power overhead given that a strong hash function is carefully

selected. The MemGuard design is independent of main memory organizations and the scheme

is reliable, effective and power efficient.

www.manaraa.com

114

CHAPTER 7. CONCLUSION AND FUTURE WORK

Memory error has been a great concern for years. It may lead to severe consequences

like data corruption, program and system crashes, and security vulnerabilities in worst case,

without error protection. On the other hand, the performance and power consumption are

other major considerations in memory system design. As conventional memory reliability de-

sign introduces significant storage, cost and power overhead, we develop novel error protection

schemes for memory systems taking into considerations of reliability, power efficiency and sys-

tem performance.

We first present E3CC, a complete solution of memory error protection for sub-ranked and

narrow-ranked low-power memories. It breaks the rigidity of conventional reliability design

by embedding ECC into DRAM devices. In the design, we propose a novel address mapping

scheme called BCRM to resolve the address mapping issue efficiently. The design is flexible,

efficient, and compatible to conventional non-ECC DIMMs. Secondly, we further explore the

address mapping schemes to support selective error protection, which selectively protect critical

data only. It thus reduces the inherent overhead with uniform reliability design. All the

proposed address mappings are based on modulo operation and they are proved to be efficient.

Such mappings facilitate selective protection and thus further improve system power efficiency.

Thirdly, we propose Free ECC design for compressed last-level cache. It embeds ECC/EDC

into the unused fragments in compressed cache so that the dedicated storage is removed, which

is required in conventional reliability design. The design thus improves cache power efficiency.

In the end, we propose MemGuard design, a system level error protection scheme for main

memory system. It is independent of DRAM organizations and isolated in memory system

level. Based on incremental hashing scheme for a sequence of memory requests, MemGuard

design is demonstrated to be stronger than SECDED in error detection. The scheme is reliable,

www.manaraa.com

115

effective and power efficient.

All these proposed schemes to main memory protection are flexible and they require no

modifications to motherboard or memory modules. They can be selectively applied to a wide

spectrum of computer systems. For mobile systems like smartphones and tablets without er-

ror protection, the proposed E3CC, selective error protection and MemGuard schemes can all

be applied. As the designs are flexible and compatible with conventional non-ECC memo-

ries, the system can be booted with ECC protection for reliability or without ECC for power

efficiency. For personal computers like desktop and laptops, all the schemes are efficient to

provide error protection without upgrading motherboard to support expensive ECC-DIMM.

For large-scale high-performance servers and datacenters, MemGuard design can be employed

for stronger error detection capability. It detects error from a system level while introduces

minimal overhead.

Throughout the dissertation, we have designed and demonstrated flexible, cost-effective,

and power-efficient reliability design. In future, we can further explore our studies on real

machines. First, we can evaluate our proposed address mapping schemes to study their effects

on distributing memory requests. Second, we can implement the selective error protection on

a real mobile system like a smartphone, through user-defined programming. We can mark the

critical data and variables by analyzing the program source code and modify the compiler to

facilitate placing the data into protected memory region. We can further build an error injector

to test its system reliability. Similar to Free ECC design to last-level cache, we can explore the

unused fragments with compression techniques in main memory systems.

www.manaraa.com

116

Bibliography

[1] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S. Schreiber, “Future scaling

of processor-memory interfaces,” in Proceedings of International Conference for High

Performance Computing, Networking, Storage and Analysis (SC), 2009, pp. 1–12.

[2] J. H. Ahn, J. Leverich, R. S. Schreiber, and N. P. Jouppi, “Multicore DIMM: an energy

efficient memory module with independently controlled DRAMs,” Computer Architecture

Letters, Vol. 8, No. 1, pp. 5–8, 2009.

[3] A. R. Alameldeen and D. A. Wood, “Frequent pattern compression: A significance-based

compression scheme for L2 caches,” in Tech. Report University of Wisconsin-Madison,

2004.

[4] D. C. ans Srinivas Devadas, M. van Dijk, B. Gassend, and G. E. Suh, “Incremental mul-

tiset hash functions and their application to memory integrity checking,” in In Advances

in Cryptology - Asiacrypt 2003 Proceedings, volume 2894 of LNCS. Springer-Verlag,

2003, pp. 188–207.

[5] A. Appleby, “Murmurhash,” https://sites.google.com/site/murmurhash/, 2011.

[6] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design & Test of Com-

puters, Vol. 22, No. 3, pp. 258–266, 2005.

[7] M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental cryptography: The case of

hashing and signing,” in Proceedings of International Cryptology Conference (CRYPTO),

Vol. 839, 1994, pp. 216–233.

[8] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation, Princeton Uni-

versity, January 2011.

https://sites.google.com/site/murmurhash/

www.manaraa.com

117

[9] S. Borkar, “The exascale challenge,” 2011, keynote speech, PACT.

[10] L. Borucki, G. Schindlbeck, and C. Slayman, “Comparison of accelerated DRAM soft er-

ror rates measured at component and system level,” in Proceedings of IEEE International

Reliability Physics Symposium (IRPS), 2008, pp. 482–487.

[11] C. Chen and M. Hsiao, “Error-correcting codes for semiconductor memory applications:

A state-of-the-art review,” IBM Journal of Research and Development, Vol. 28, No. 2,

pp. 124–134, 1984.

[12] G. Chen, M. Kandemir, M. J. Irwin, and G. Memik, “Compiler-directed selective data

protection against soft errors,” in Proceedings of Design Automation Conference (DAC),

2005, pp. 713–716.

[13] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “A performance comparison of contem-

porary DRAM architectures,” in Proceedings of International Symposium on Computer

Architecture (ISCA), 1999, pp. 222–233.

[14] V. Degalahal, N. Vijaykrishnan, and M. J. Irwin, “Analyzing soft errors in leakage opti-

mized SRAM design,” in Proceedings of International Conference on VLSI Design, 2003,

pp. 227–233.

[15] T. J. Dell, “A white paper on the benefits of chipkill-correct ECC for PC server main

memory,” 1997.

[16] B. Diniz, D. Guedes, W. M. Jr., and R. Bianchini, “Limiting the power consumption

of main memory,” in Proceedings of International Symposium on Computer Architecture

(ISCA), 2007, pp. 290–301.

[17] J. Dusser, T. Piquet, and A. Seznec, “Zero-content augmented caches,” in Proceedings of

International Conference on Supercomputing (ICS), 2009, pp. 46–55.

[18] S. J. Eggers, F. Olken, and A. Shoshani, “A compression technique for large statistical

data-bases,” in Proceedings of International Conference on Very Large Data Bases, Vol. 7,

1981, pp. 424–434.

www.manaraa.com

118

[19] P. G. Emma, W. R. Reohr, and M. Meterelliyoz, “Rethinking refresh: Increasing avail-

ability and reducing power in DRAM for cache applications,” IEEE Micro, Vol. 28, No. 6,

pp. 47–56, 2008.

[20] C. Estebanez, Y. Saez, G. Recio, and P. Isasi, “Performance of the most common non-

cryptographic hash functions,” in Software: Practice and Experience, 2013.

[21] K. Ferreire, J. Stearley, J. H. L. III, R. Oldfield, R. Riesen, P. G. Bridges, and D. Arnold,

“Evaluating the viability of process replication reliability for exascale systems,” in Pro-

ceedings of International Conference for High Performance Computing, Networking, Stor-

age and Analysis (SC), No. 44, 2011.

[22] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R. Brightwell, “Detection

and correction of silent data corruption for large-scale high-performance computing,” in

Proceedings of International Conference for High Performance Computing, Networking,

Storage and Analysis (SC), 2012, pp. 78:1–78:12.

[23] G. Fowler, P. Vo, and L. C. Noll, “FNV hash,” http://www.isthe.com/chongo/tech/

comp/fnv/, 1991.

[24] F. Y. C. Fung, A Survey of the Theory of Error-Correcting Codes. Harvard-radcliff Math

BUlletin, 2008.

[25] Q. Gao, “The Chinese remainder theorem and the prime memory system,” in Proceedings

of International Symposium on Computer Architecture (ISCA), 1993, pp. 337–340.

[26] Google, “Cityhash 1.1,” http://code.google.com/p/cityhash/, 2010.

[27] S. Govindavajhala and A. W. Appel, “Using memory errors to attack a virtual machine,”

in Proceedings of IEEE Symposium on Security and Privacy (ISSP), 2003, pp. 154–165.

[28] R. Hamming, “Error correcting and error detection codes,” Bell System Technical Jour-

nal, Vol. 29, No. 2, pp. 147–160, 1950.

[29] J. Henning, “SPEC CPU2006 memory footprint,” ACM SIGARCH Computer Architec-

ture News, Vol. 35, No. 1, 2007.

http://www.isthe.com/chongo/tech/comp/fnv/
http://www.isthe.com/chongo/tech/comp/fnv/
http://code.google.com/p/cityhash/

www.manaraa.com

119

[30] R. Housley, “A 224-bit one-way hash function: SHA-224,” RFC 3874, Sep. 2004.

[31] M. Hsiao, “A class of optimal minimum odd-weight-column SEC-DED codes,” IBM Jour-

nal of Research and Development, Vol. 14, No. 4, pp. 395–401, 1970.

[32] I. Hur and C. Lin, “A comprehensive approach to DRAM power management,” in

Proceedings of International Symposium on High Performance Computer Architecture

(HPCA), 2008, pp. 305–316.

[33] A. A. Hwang, I. Stefanovici, and B. Schroeder, “Cosmic rays don’t strike twice: Under-

standing the nature of DRAM errors and the implications for system design,” in Proceed-

ings of International Conference on Architecture Support for Programming Languages

and Operating Systems (ASPLOS), 2012, pp. 111–122.

[34] Hybrid Memory Cube Consortium, “Hybrid memory cube specification 1.0,” 2013.

[35] Intel Inc., “Intel E7500 chipset MCH Intel x4 single device data correction (x4 SDDC)

implementation and validation,” 2002.

[36] Intel Inc., “The problem of power consumption in servers,” Technical Report, 2012.

[37] Intel Inc., “Intel 64 and IA-32 architectures optimization reference man-

ual,” http://www.intel.com/content/www/us/en/architecture-and-technology/

64-ia-32-architectures-optimization-manual.html, 2014.

[38] T. Z. Islam, K. Mohror, S. Bagchi, A. Moody, B. R. de Supinski, and R. Eigenmann,

“Mcrengine: A scalable checkpointing system using data-aware aggregation and com-

pression,” in Proceedings of International Conference for High Performance Computing,

Networking, Storage and Analysis (SC), 2012, pp. 17:1–17:11.

[39] ITRS, “Process integration, device, and structures,” International technology roadmap

for semiconductors, 2011 Edition, 2011.

[40] ITRS, “International technology roadmap for semiconductors,” http://www.itrs.net/

Links/2012ITRS/Home2012.htm, 2012.

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.itrs.net/Links/2012ITRS/Home2012.htm
http://www.itrs.net/Links/2012ITRS/Home2012.htm

www.manaraa.com

120

[41] K. Jarvinen, M. Tommiska, and J. Skytta, “Hardware implementation analysis of the

MD5 hash algorithm,” in Proceedings of Annual Hawaii International Conference on

System Sciences (HICSS), 2005, p. 298a.

[42] B. Jenkins, “Hash functions for hash table lookup,” http://www.burtleburtle.net/bob/

hash/evahash.html, 2009.

[43] B. Jenkins, “Spookyhash: a 128-bit noncryptographic hash,” http://www.burtleburtle.

net/bob/hash/spooky.html, 2011.

[44] M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and M. Erez, “Balancing DRAM

locality and parallelism in shared memory CMP systems,” in Proceedings of International

Symposium on High Performance Computer Architecture (HPCA), 2012, pp. 1–12.

[45] A. H. Johnston, “Scaling and technology issues for soft error rates,” in Proceedings of

Annual Conference on Reliability, 2000.

[46] P. Jones, “US secure hash algorithm 1 (SHA1),” RFC 3174, Sep. 2001.

[47] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist open-page: a DRAM page-

mode scheduling policy for many-core era,” in Proceedings of International Symposium

on Microarchitecture (MICRO), 2011, pp. 24–35.

[48] Y. Katayama, E. J. Stuckey, S. Morioka, and Z. Wu, “Fault-tolerant refresh power re-

duction of DRAMs for quasi-nonvolatile data retention,” in Proceedings of International

Symposium on Defect and Fault Tolerance in VLSI Systems (DFT), 1999, pp. 311–318.

[49] K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engelmann, “Combining partial

redundancy and checkpointing for HPC,” in Proceedings of International Conference for

Distributed Computing Systems (ICDCS), 2012, pp. 615–626.

[50] S. Kim and A. K. Somani, “Area efficient architecture for information integrity in cache

memories,” in Proceedings of International Symposium on Computer Architecture (ISCA),

1999, pp. 246–255.

http://www.burtleburtle.net/bob/hash/evahash.html
http://www.burtleburtle.net/bob/hash/evahash.html
http://www.burtleburtle.net/bob/hash/spooky.html
http://www.burtleburtle.net/bob/hash/spooky.html

www.manaraa.com

121

[51] S. Kim, “Area-efficient error protection for caches,” in Proceedings of Design Automation

and Test in Europe (DATE), 2006, pp. 1–6.

[52] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A scalable and high-

performance scheduling algorithm for multiple memory controllers,” in Proceedings of

International Symposium on High Performance Computer Architecture (HPCA), 2010,

pp. 1–12.

[53] I. Koren and C. M. Krishna, Fault-tolerant systems. Morgan Kaufmann, 2007.

[54] D. H. Lawrie and C. R. Vora, “The prime memory system for array access,” ACM Trans-

actions on Computers (TC), Vol. C-31, pp. 435–442, 1982.

[55] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens, “Eager writeback - a technique for im-

proving bandwidth utilization,” in Proceedings of International Symposium on Microar-

chitecture (MICRO), 2000, pp. 11–21.

[56] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkatasubramanian, “Mitigating soft

error failures for multimedia applications by selective data protection,” in Proceedings In-

ternational Conference on Compilers, Architecture and Synthesis for Embedded Systems,

2006, pp. 411–420.

[57] K. Li, J. F. Naughton, and J. S. Plank, “Low-latency, concurrent checkpointing for par-

allel programs,” IEEE Transactions on Parallel and Distributed Systems (TPDS), Vol. 5,

pp. 874–879, 1994.

[58] L. Li and N. V. Vijay Degalahal, “Soft error and energy consumption interactions: A data

cache perspective,” in Proceedings of International Symposium on Low Power Electronics

and Design (ISLPED), 2004, pp. 132–137.

[59] X. Li, M. C. Huang, K. Shen, and L. Chu, “A realistic evaluation of memory hardware

errors and software system susceptibility,” in Proceedings of the USENIX Conference on

USENIX annual technical conference, 2010, pp. 6–6.

www.manaraa.com

122

[60] J. Lin, H. Zheng, Z. Zhu, E. Gorbatov, H. David, and Z. Zhang, “Software thermal

management of DRAM memory for multicore systems,” in Proceedings of International

Joint Conference on Measurement and Modeling of Computer Systems (SIGMETRICS),

2008, pp. 337–348.

[61] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Multu, “An experimental study of

data retention behavior in modern DRAM devices: implications for retention time profil-

ing mechanisms,” in Proceedings of International Symposium on Computer Architecture

(ISCA), 2013, pp. 60–71.

[62] J. Liu, B. Jaiyen, R. Veras, and O. Multu, “RAIDR: retention-aware intelligent DRAM

refresh,” in Proceedings of International Symposium on Computer Architecture (ISCA),

2012, pp. 1–12.

[63] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving DRAM

refresh-power through critical data partitioning,” in Proceedings of International Confer-

ence on Architecture Support for Programming Languages and Operating Systems (ASP-

LOS), 2011, pp. 213–224.

[64] D. Locklear, “Chipkill correct memory architecture,” 2000.

[65] “Reliability data sets,” http://institutes.lanl.gov/data/fdata/, Los Alamos National Lab-

oratory, 2011.

[66] S. Mathew, M. Anders, R. Krishnamurthy, and S. Borkar, “A 6.5GHz 54mW 64-bit

parity-checking adder for 65nm fault-tolerant microprocessor execution cores,” in Pro-

ceedings of IEEE Symposium on VLSI Circuits, 2007, pp. 46–47.

[67] T. C. May and M. H. Woods, “Alpha-particle-induced soft errors in dynamic memories,”

IEEE Transactions on Electron Devices, Vol. 26, No. 1, pp. 2–9, 1979.

[68] M. Mehrara and T. Austin, “Exploiting selective placement for low-cost memory protec-

tion,” ACM Transactions on Architecture and Code Optimization (TACO), Vol. 5, No. 3,

2008.

http://institutes.lanl.gov/data/fdata/

www.manaraa.com

123

[69] Micron Technology, Inc., “DDR3 SDRAM MT41J256M8-32 Megx8x8Banks.” http://

www.micron.com/, 2006.

[70] Micron Technology, Inc., “DDR3 SDRAM system-power calculator,” http://www.micron.

com/, 2007.

[71] R. H. Morelos-Zaragoza, The Art of Error Correcting Coding, 2nd ed. Wiley, 2006.

[72] S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error problem: an architectural

perspective,” in Proceedings of International Symposium on High Performance Computer

Architecture (HPCA), 2005, pp. 243–247.

[73] P. J. Nair, D.-H. Kim, and M. K. Qureshi, “ArchShield: Architectural framework for

assisting DRAM scaling by tolerating high error rates,” in Proceedings of International

Symposium on Computer Architecture (ISCA), 2013, pp. 72–83.

[74] X. Ni, E. Meneses, N. Jain, and L. V. Kale, “ACR: automatic checkpoint/restart for

soft and hard error protection,” in Proceedings of International Conference for High

Performance Computing, Networking, Storage and Analysis (SC), No. 7, 2013.

[75] D. J. W. Noorlag, L. M. Terman, and A. G. Konheim, “The effect of alpha-particle-

induced soft errors on memory systems with error correction,” IEEE Journal of Solid-

State Circuits, Vol. 15, No. 3, pp. 319–325, 1980.

[76] I. Oz, H. R. Topcuoglu, M. Kandemir, and O. Kandemir, “Reliability-aware core parti-

tioning in chip multiprocessors,” Journal of System Architecture, Vol. 58, No. 3-4, pp.

160–176, 2012.

[77] I. Oz, H. R. Topcuoglu, M. Kandemir, and O. Tosun, “Quantifying thread vulnerability

for multicore architectures,” in Proceedings of Euromicro International Conference on

Parallel, Distributed and Network-based Processing (PDP), 2011, pp. 32–39.

[78] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A full system simulator for

x86 CPUs,” in Proceedings of Design Automation Conference (DAC), 2011, pp. 5–9.

http://www.micron.com/
http://www.micron.com/
http://www.micron.com/
http://www.micron.com/

www.manaraa.com

124

[79] P. K. Pearson, “Fast hashing of variable-length text strings,” in Proceedings of Interna-

tional Conference on Database Systems for Advanced Applications, 1990.

[80] G. Pekhimenko, V. Seshadri, O. Multu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry,

“Base-delta-immediate compression: Practical data compression for on-chip caches,” in

Proceedings of the International Conference on Parallel Architecture and Compilation

Techniques (PACT), 2012, pp. 377–388.

[81] W. W. Peterson and D. T. Brown, “Cyclic codes for error detection,” in In proceedings

of IRE, Vol. 49, 1960.

[82] J. S. Plank, Y. Chen, K. Li, M. Beck, and G. Kinsley, “Memory exclusion: optimizing

the performance of checkpointing systems,” Software: Practice and Experience, Vol. 29,

pp. 125–142, 1999.

[83] T. R. N. Rao and E. Fujiwara, Error Control Coding For Computer Systems. Prentice

Hall, 1989.

[84] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of the

Society for Industrial and Applied Math, Vol. 8, No. 2, 1960.

[85] R. Rivest, “The MD4 message-digest algorithm,” RFC 1320, MIT Laboratory for Com-

puter Science and RSA Data Security, Inc., April 1992.

[86] R. Rivest, “The MD5 message-digest algorithm,” RFC 1321, MIT Laboratory for Com-

puter Science and RSA Data Security, Inc., April 1992.

[87] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory ac-

cess scheduling,” in Proceedings of International Symposium on Computer Architecture

(ISCA), 2000, pp. 128–138.

[88] J. C. Sancho, F. Petrini, G. Johnson, J. Fernandez, and E. Frachtenberg, “On the feasibil-

ity of incremental checkpointing for scientific computing,” in Proceedings of International

Parallel and Distributed Processing Symposium (IPDPS), 2004, pp. 26–30.

www.manaraa.com

125

[89] A. Satoh and T. Inoue, “ASIC-hardware-focused comparison for hash functions MD5,

RIPEMD-160, and SHS,” in Proceedings of International Conference on Information

Technology: Coding and Computing (ITCC), Vol. 1, 2005, pp. 532–537.

[90] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ECP, not ECC, for hard

failures in resistive memories,” in Proceedings of International Symposium on Computer

Architecture (ISCA), 2010, pp. 141–152.

[91] B. Schroeder and G. A. Gibson, “Disk failures in the real world: What does an MTTF

of 1,000,000 hours mean to you?” in Proceedings of the USENIX Conference on File and

Storage Technologies (FAST), No. 1, 2007.

[92] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the wild: A large-scale

field study,” in Proceedings of International Joint Conference on Measurement and Mod-

eling of Computer Systems (SIGMETRICS), Vol. 37, 2009, pp. 193–204.

[93] L. Semiconductor, “ECC module,” Reference Design 1025, 2012.

[94] N. H. Seong et al., “SAFER: Stuck-at-fault error recovery for memories,” in Proceedings

of International Symposium on Microarchitecture (MICRO), 2010, pp. 115–124.

[95] J. W. Sheaffer, D. P. Luebke, and K. Skadron, “The visual vulnerability spectrum: char-

acterizing architectural vulnerability for graphics hardware,” in Proceedings ACM SIG-

GRAPH/EUROGRAPHICS symposium on Graphics Hardware, 2006, pp. 9–16.

[96] A. Snavely, D. M. Tullsen, and G. Voelker, “Symbiotic jobscheduling with priorities for a

simultaneous multithreading processor,” in Proceedings of International Joint Conference

on Measurement and Modeling of Computer Systems (SIGMETRICS), 2002, pp. 66–76.

[97] V. Sridharan and D. R. Kaeli, “Quantifying software vulnerability,” in Proc. workshop

on Radiation effects and fault tolerance in nanometer technologies, 2008, pp. 323–328.

[98] SPEC CPU2006, http://www.spec.org, Standard Performance Evaluation Corporation,

2011.

http://www.spec.org

www.manaraa.com

126

[99] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “Efficient memory

integrity verification and encryption for secure processors,” in Proceedings of International

Symposium on Microarchitecture (MICRO), 2003, pp. 339–350.

[100] N. Takagi, S. Kadowaki, and K. Takagi, “A hardware algorithm for integer division,” in

Proceedings of IEEE Symposium on Computer Arithmetic, 2005, pp. 140–146.

[101] M.-H. Teng, “Comments on ‘the prime memory system for array access’,” Vol. C-32, p.

1072, 1983.

[102] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “Cacti 5.3,” HP Labora-

tories, Tech. Rep., 2008.

[103] A. N. Udipi, N. Muralimanohar, R. Balasubramonian, A. Davis, and N. P. Jouppi, “LOT-

ECC: Localized and tiered reliability mechanisms for commodity memory systems,” in

Proceedings of International Symposium on Computer Architecture (ISCA), 2012, pp.

285–296.

[104] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian, A. Davis, and N. P.

Jouppi, “Rethinking DRAM design and organization for energy-constrained multi-cores,”

in Proceedings of International Symposium on Computer Architecture (ISCA), 2010, pp.

175–186.

[105] F. A. Ware and C. Hampel, “Improving power and data efficiency with threaded memory

modules,” in Proceedings of International Conference on Computer Design (ICCD), 2006,

pp. 417–424.

[106] M. Weiser, “Program slicing,” IEEE Transactions on Software Engineering, Vol. SE-10,

No. 4, 1984.

[107] C. Wilderson, A. R. Alameldeen, Z. Chrishti, W. Wu, D. Somasekhar, and S. lien Lu,

“Reducing cache power with low-cost, multi-bit error-correcting codes,” in Proceedings

of International Symposium on Computer Architecture (ISCA), 2010, pp. 83–93.

www.manaraa.com

127

[108] J. Xu, S. Chen, Z. Kalbarczyk, and R. K. Iyer, “An experimental study of security vul-

nerabilities caused by errors,” in Proceedings of International Conference on Dependable

Systems and Networks (DSN), 2001, pp. 421–430.

[109] J. Yang, Y. Zhang, and R. Gupta, “Frequent value compression in data caches,” in

Proceedings of International Symposium on Microarchitecture (MICRO), 2000, pp. 258–

265.

[110] K. S. Yim, Z. Kalbarczyk, and R. K. Iyer, “Measurement-based analysis of fault and

error sensitivities of dynamic memory,” in Proceedings of International Conference on

Dependable Systems and Networks (DSN), 2010, pp. 431–436.

[111] D. H. Yoon and M. Erez, “Flexible cache error protection using an ECC FIFO,” in

Proceedings of International Conference for High Performance Computing, Networking,

Storage and Analysis (SC), No. 49, 2009.

[112] D. H. Yoon and M. Erez, “Memory mapped ECC: Low-cost error protection for last level

caches,” in Proceedings of International Symposium on Computer Architecture (ISCA),

2009, pp. 116–127.

[113] D. H. Yoon and M. Erez, “Virtualized and flexible ECC for main memory,” in Proceedings

of International Conference on Architecture Support for Programming Languages and

Operating Systems (ASPLOS), 2010, pp. 397–408.

[114] D. H. Yoon and M. Erez, “Virtualized ECC: Flexible reliability in main memory,” IEEE

Micro, Vol. 31, No. 1, pp. 11–19, 2011.

[115] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. P. Jouppi, and M. Erez,

“FREE-p: protecting non-volatile memory against both hard and soft errors,” in Proc.

HPCA, 2011.

[116] W. Zhang, “Enhancing data cache reliability by the addition of a small fully-associative

replication cache,” in Proceedings of International Conference on Supercomputing (ICS),

2004, pp. 12–19.

www.manaraa.com

128

[117] W. Zhang, “Replication cache: A small fully associative cache to improve data cache

reliability,” in ACM Transactions on Computers (TC), Vol. 54, No. 12, 2005, pp. 1547–

1555.

[118] W. Zhang, S. Gurumurthi, and M. Kagdemir, “ICR: In-cache replication for enhancing

data cache reliability,” in Proceedings of International Conference on Dependable Systems

and Networks (DSN), 2003, pp. 291–300.

[119] Z. Zhang, Z. Zhu, and X. Zhang, “A permutation-based page interleaving scheme to

reduce row-buffer conflicts and exploit data locality,” in Proceedings of International

Symposium on Microarchitecture (MICRO), 2000, pp. 32–41.

[120] G. Zheng, X. Ni, and L. V. Kale, “A scalable double in-memory checkpoint and restart

scheme towards exascale,” in Proceedings of International Conference for Dependable

System and Networks Workshops (DSN-W), 2012, pp. 1–6.

[121] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu, “Mini-rank: adaptive

DRAM architecture for improving memory power efficiency,” in Proceedings of Interna-

tional Symposium on Microarchitecture (MICRO), 2008, pp. 210–221.

[122] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” Vol. 23,

No. 3, pp. 337–343, 1977.

[123] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate coding,”

Vol. 24, No. 5, pp. 530–536, 1978.

	2014
	Energy-efficient and cost-effective reliability design in memory systems
	Long Chen
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	2. BACKGROUND
	2.1 Main Memory Organization
	2.2 DDRx DRAM Power Model
	2.3 Memory Error Causes and Consequences
	2.3.1 Causes of Memory Errors
	2.3.2 Memory Error Rate and Consequences

	2.4 Memory Error Protection

	3. E3CC: RELIABILITY SCHEME FOR NARROW-RANKED LOW-POWER MEMORIES
	3.1 Introduction
	3.2 Background and Related Work
	3.3 Design of E3CC
	3.3.1 DIMM Organization and Intra-Block Layout
	3.3.2 Interleaving Schemes and Address Mapping
	3.3.3 Page-Interleaving with BCRM
	3.3.4 Extra ECC Traffic and ECC-Cache
	3.3.5 Reliability and Extension

	3.4 Experimental Methodologies
	3.4.1 Statistical Memory MTTF Model

	3.5 Experimental Results
	3.5.1 Overall Performance of Full-Rank Memories
	3.5.2 Overall Performance of Sub-Ranked Memories
	3.5.3 Memory Traffic Overhead and ECC-Cache
	3.5.4 Power Efficiency of E3CC Memories
	3.5.5 Evaluation of Using Long BCH Code

	3.6 Summary

	4. EXPLORING FLEXIBLE MEMORY ADDRESS MAPPING AT DEVICE LEVEL FOR SELECTIVE ERROR PROTECTION
	4.1 Introduction
	4.2 Background and Related Work
	4.2.1 Diverse Sensitivities of Data, Variables and Applications
	4.2.2 DRAM Accessing Page Policies
	4.2.3 Related Work

	4.3 Problem Presentation
	4.3.1 DRAM Device-Level Address Mapping
	4.3.2 Address Mapping Issue in SEP

	4.4 Novel Address Mapping Schemes
	4.4.1 SEP Design Overview
	4.4.2 Exploring Generic Address Mapping Schemes
	4.4.3 Case Study of Real DDR3 System With SEP
	4.4.4 Hardware Implementation of Modulo Operation
	4.4.5 Other Discussions

	4.5 Discussion of Application Scenarios
	4.5.1 OS and Compiler Aided Selective Protection
	4.5.2 Selective Protection to Lower Refresh Frequency
	4.5.3 Selective Protection to High Error Rate Region
	4.5.4 Balancing DRAM Access Locality and Parallelism

	4.6 Summary

	5. FREE ECC: EFFICIENT ECC DESIGN FOR COMPRESSED LLC
	5.1 Introduction
	5.2 Background and Related Work
	5.2.1 Cache Compression Schemes
	5.2.2 Fragments In Compressed Cache
	5.2.3 Related Work

	5.3 Design of Free ECC
	5.3.1 Convergent Allocation Scheme
	5.3.2 Free ECC Design

	5.4 Experimental Methodologies
	5.5 Experimental Results
	5.5.1 Comparison of Cache Allocation Schemes
	5.5.2 BI Data Compressed Pattern Analysis
	5.5.3 Effective Utilization of Cache Capacity
	5.5.4 Performance of Free ECC
	5.5.5 Cache Power Consumption
	5.5.6 Energy-Delay Product Improvement

	5.6 Summary

	6. MEMGUARD: A LOW COST AND ENERGY EFFICIENT DESIGN TO SUPPORT AND ENHANCE MEMORY SYSTEM RELIABILITY
	6.1 Introduction
	6.2 Background and Related Work
	6.2.1 Memory Organization Variants
	6.2.2 Related Work

	6.3 MemGuard Design
	6.3.1 Incremental Hash Functions
	6.3.2 Log Hash Based Error Detection
	6.3.3 Reliability Analysis
	6.3.4 Selection of Hash Function
	6.3.5 Checkpointing Mechanism for Error Recovery
	6.3.6 Integrity-Check Optimization and Other Discussions

	6.4 Experimental Methodologies
	6.5 Experimental Results
	6.5.1 Reliability Study
	6.5.2 System Performance Study
	6.5.3 Memory Traffic Overhead

	6.6 Summary

	7. CONCLUSION AND FUTURE WORK

